Dicoogle, a Pacs Featuring Profiled Content Based Image Retrieval

Content-based image retrieval (CBIR) has been heralded as a mechanism to cope with the increasingly larger volumes of information present in medical imaging repositories. However, generic, extensible CBIR frameworks that work natively with Picture Archive and Communication Systems (PACS) are scarce. In this article we propose a methodology for parametric CBIR based on similarity profiles. The architecture and implementation of a profiled CBIR system, based on query by example, atop Dicoogle, an open-source, full-fletched PACS is also presented and discussed. In this solution, CBIR profiles allow the specification of both a distance function to be applied and the feature set that must be present for that function to operate. The presented framework provides the basis for a CBIR expansion mechanism and the solution developed integrates with DICOM based PACS networks where it provides CBIR functionality in a seamless manner.

[1]  T D Cradduck,et al.  National electrical manufacturers association , 1983, Journal of the A.I.E.E..

[2]  Michael Diepenbroek,et al.  Generic XML-based framework for metadata portals , 2008, Comput. Geosci..

[3]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[4]  Pavel Zezula,et al.  Similarity Search - The Metric Space Approach , 2005, Advances in Database Systems.

[5]  Nelson Pacheco da Rocha,et al.  DICOM and Clinical Data Mining in a Small Hospital PACS: A Pilot Study , 2011, CENTERIS.

[6]  Hayit Greenspan,et al.  Content-Based Image Retrieval in Radiology: Current Status and Future Directions , 2010, Journal of Digital Imaging.

[7]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[8]  Thomas Tolxdorff,et al.  DICOM Image Communication in Globus-Based Medical Grids , 2008, IEEE Transactions on Information Technology in Biomedicine.

[9]  Zhe Wang,et al.  Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search , 2007, VLDB.

[10]  José Luís Oliveira,et al.  Indexing and retrieving DICOM data in disperse and unstructured archives , 2008, International Journal of Computer Assisted Radiology and Surgery.

[11]  Fabio A. González,et al.  Histopathology Image Classification Using Bag of Features and Kernel Functions , 2009, AIME.

[12]  Antoine Geissbühler,et al.  Medical Visual Information Retrieval: State of the Art and Challenges Ahead , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[13]  Rebecca S Lewis,et al.  Disagreement in interpretation: a method for the development of benchmarks for quality assurance in imaging. , 2004, Journal of the American College of Radiology : JACR.

[14]  Chia-Chi Teng,et al.  A medical image archive solution in the cloud , 2010, 2010 IEEE International Conference on Software Engineering and Service Sciences.

[15]  Johannes Bernarding,et al.  Digital pathology: DICOM-conform draft, testbed, and first results , 2007, Comput. Methods Programs Biomed..

[16]  Ricardo A. Baeza-Yates,et al.  Searching in metric spaces , 2001, CSUR.

[17]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[18]  Paul Nagy,et al.  Benefits of Using the DCM4CHE DICOM Archive , 2007, Journal of Digital Imaging.

[19]  Hong Chang,et al.  Kernel-based distance metric learning for content-based image retrieval , 2007, Image Vis. Comput..

[20]  Masoud Nikravesh,et al.  Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing) , 2006 .

[21]  Otis Gospodnetic,et al.  Lucene in Action , 2004 .

[22]  Allan G. Farman,et al.  Applying DICOM to Dentistry , 2005, Journal of Digital Imaging.

[23]  Mathias Lux,et al.  Lire: lucene image retrieval: an extensible java CBIR library , 2008, ACM Multimedia.

[24]  Caroline Beebe,et al.  Bridging the Semantic Gap: Exploring Descriptive Vocabulary for Image Structure , 2007, SAMT.

[25]  José Luís Oliveira,et al.  Dicoogle - an Open Source Peer-to-Peer PACS , 2011, Journal of Digital Imaging.

[26]  Robert M. Nishikawa,et al.  Mammogram Retrieval by Similarity Learning from Experts , 2006, 2006 International Conference on Image Processing.

[27]  H. K. Huang,et al.  Comprar PACS and Imaging Informatics: Basic Principles and Applications | David W. Young | 9780470373729 | Wiley , 2009 .

[28]  Manisha Sharma,et al.  Comparative Evaluation of Image Retrieval Algorithms using Relevance Feedback and it's Applications , 2012 .

[29]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  M. K. Luhandjula Studies in Fuzziness and Soft Computing , 2013 .

[31]  Rolf W. Günther,et al.  Integration of a research CBIR system with RIS and PACS for radiological routine , 2008, SPIE Medical Imaging.

[32]  Nikolas P. Galatsanos,et al.  A similarity learning approach to content-based image retrieval: application to digital mammography , 2004, IEEE Transactions on Medical Imaging.

[33]  Hanan Samet,et al.  Index-driven similarity search in metric spaces (Survey Article) , 2003, TODS.

[34]  H. K. Huang,et al.  PACS and Imaging Informatics: Basic Principles and Applications , 2004 .

[35]  José Luís Oliveira,et al.  Current Perspectives on PACS and a Cardiology Case Study , 2007, Advanced Computational Intelligence Paradigms in Healthcare - 2.

[36]  Pavel Zezula,et al.  Similarity Search: The Metric Space Approach (Advances in Database Systems) , 2005 .

[37]  Chao-Tung Yang,et al.  Implementation of a medical image file accessing system in co-allocation data grids , 2010, Future Gener. Comput. Syst..

[38]  Gwénolé Quellec,et al.  Wavelet optimization for content-based image retrieval in medical databases , 2010, Medical Image Anal..

[39]  Jan Paredaens,et al.  Advances in Database Systems , 1994 .

[40]  G. Rubin,et al.  Data explosion: the challenge of multidetector-row CT. , 2000, European journal of radiology.

[41]  Oleg S. Pianykh,et al.  Digital Imaging and Communications in Medicine (DICOM) , 2017, Radiopaedia.org.

[42]  J. Lancaster,et al.  Rates of disagreement in imaging interpretation in a group of community hospitals. , 1998, Academic radiology.

[43]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[45]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.