An efficient 3D enhanced strain element with Taylor expansion of the shape functions

Further development of three dimensional tri-linear elements based on a modified enhanced strain methodology is presented. The new formulation employs Taylor expansions of the derivatives of the isoparametric and enhanced shape functions in local coordinates. With this approach, only nine enhanced modes are needed for developing a dilatational-locking free element. Furthermore, the formulation permits a symbolic integration of the element tangent matrix, and more efficient static condensation procedure due to uncoupling of the enhanced modes. Good results in the analysis of thin shell structures, using only one 3D element in the thickness direction of the shell, are also presented.

[1]  Peter Wriggers,et al.  A formulation for the 4‐node quadrilateral element , 1995 .

[2]  Peter Wriggers,et al.  IMPROVED ENHANCED STRAIN FOUR-NODE ELEMENT WITH TAYLOR EXPANSION OF THE SHAPE FUNCTIONS , 1997 .

[3]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[4]  Ted Belytschko,et al.  Multiple quadrature underintegrated finite elements , 1994 .

[5]  Werner Wagner,et al.  A new boundary-type finite element for 2-D- and 3-D-elastic structures , 1994 .

[6]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[7]  Xikui Li,et al.  MIXED STRAIN ELEMENTS FOR NON‐LINEAR ANALYSIS , 1993 .

[8]  Robert L. Taylor,et al.  Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems☆ , 1993 .

[9]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[10]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[11]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[12]  Edward L. Wilson,et al.  Incompatible Displacement Models , 1973 .

[13]  K. Y. Sze,et al.  Efficient formulation of robust hybrid elements using orthogonal stress/strain interpolants and admissible matrix formulation , 1992 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  S. Atluri,et al.  On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner’s variational principle , 1985 .

[16]  K. Y. Sze,et al.  Finite element formulation by parametrized hybrid variational principles: Variable stiffness and removal of locking , 1994 .

[17]  Satya N. Atluri,et al.  An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields , 1983 .

[18]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[19]  R. A. Uras,et al.  Finite element stabilization matrices-a unification approach , 1985 .

[20]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[21]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[22]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[23]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .