Phylogenomic analyses of Sapindales support new family relationships, rapid Mid-Cretaceous Hothouse diversification, and heterogeneous histories of gene duplication

Sapindales is an angiosperm order of high economic and ecological value comprising nine families, c. 479 genera, and c. 6570 species. However, family and subfamily relationships in Sapindales remain unclear, making reconstruction of the order’s spatio-temporal and morphological evolution difficult. In this study, we used Angiosperms353 target capture data to generate the most densely sampled phylogenetic trees of Sapindales to date, with 448 samples and c. 85% of genera represented. The percentage of paralogous loci and allele divergence was characterized across the phylogeny, which was time-calibrated using 29 rigorously assessed fossil calibrations. All families were supported as monophyletic. Two core family clades subdivide the order, the first comprising Kirkiaceae, Burseraceae, and Anacardiaceae, the second comprising Simaroubaceae, Meliaceae, and Rutaceae. Kirkiaceae is sister to Burseraceae and Anacardiaceae, and, contrary to current understanding, Simaroubaceae is sister to Meliaceae and Rutaceae. Sapindaceae is placed with Nitrariaceae and Biebersteiniaceae as sister to the core Sapindales families, but the relationships between these families remain unclear, likely due to their rapid and ancient diversification. Sapindales families emerged in rapid succession, coincident with the climatic change of the Mid-Cretaceous Hothouse event. Subfamily and tribal relationships within the major families need revision, particularly in Sapindaceae, Rutaceae and Meliaceae. Much of the difficulty in reconstructing relationships at this level may be caused by the prevalence of paralogous loci, particularly in Meliaceae and Rutaceae, that are likely indicative of ancient gene duplication events such as hybridization and polyploidization playing a role in the evolutionary history of these families. This study provides key insights into factors that may affect phylogenetic reconstructions in Sapindales across multiple scales, and provides a state-of-the-art phylogenetic framework for further research.

[1]  T. Schwarzacher,et al.  Polyploidy: its consequences and enabling role in plant diversification and evolution , 2022, Annals of botany.

[2]  J. Franke,et al.  Identification of early quassinoid biosynthesis in the invasive tree of heaven (Ailanthus altissima) confirms evolutionary origin from protolimonoids , 2022, Frontiers in Plant Science.

[3]  M. van Loo,et al.  Utilizing paralogues for phylogenetic reconstruction has the potential to increase species tree support and reduce gene tree discordance in target enrichment data , 2022, Molecular ecology resources.

[4]  Emily J. Warschefsky,et al.  Neotropical Anacardiaceae (cashew family) , 2022, Brazilian Journal of Botany.

[5]  Burseraceae , 2022, Food Plants of the Sonoran Desert.

[6]  T. Terrazas,et al.  The wood anatomy of Sapindales: diversity and evolution of wood characters , 2022, Brazilian Journal of Botany.

[7]  J. Pirani,et al.  What reproductive traits tell us about the evolution and diversification of the tree-of-heaven family, Simaroubaceae , 2022, Brazilian Journal of Botany.

[8]  A. Souto,et al.  Diversity and evolution of secretory structures in Sapindales , 2022, Brazilian Journal of Botany.

[9]  OUP accepted manuscript , 2022, Journal Of Experimental Botany.

[10]  Matthew A. Gitzendanner,et al.  Plastid phylogenomic insights into relationships of all flowering plant families , 2021, BMC Biology.

[11]  L. Majure,et al.  An updated account of Simaroubaceae with emphasis on American taxa , 2021, Brazilian Journal of Botany.

[12]  Luciano da Silva Pinto,et al.  Nortriterpenes, chromones, anthraquinones, and their chemosystematics significance in Meliaceae, Rutaceae, and Simaroubaceae (Sapindales) , 2021, Brazilian Journal of Botany.

[13]  M. Groppo,et al.  A new subfamily classification of the Citrus family (Rutaceae) based on six nuclear and plastid markers , 2021, TAXON.

[14]  E. Forni-Martins,et al.  Chromosome numbers and their evolutionary meaning in the Sapindales order: an overview , 2021, Brazilian Journal of Botany.

[15]  D. Crayn,et al.  HybPhaser: A workflow for the detection and phasing of hybrids in target capture data sets , 2021, Applications in plant sciences.

[16]  Matthew G. Johnson,et al.  Exploring Angiosperms353: Developing and applying a universal toolkit for flowering plant phylogenomics , 2021, Applications in plant sciences.

[17]  Matthew G. Johnson,et al.  Exploring Angiosperms353: an open, community toolkit for collaborative phylogenomic research on flowering plants. , 2021, American journal of botany.

[18]  F. Forest,et al.  An updated infra‐familial classification of Sapindaceae based on targeted enrichment data , 2021, American journal of botany.

[19]  Lucas Paradizo Roma,et al.  A comprehensive review of the chemical composition and epicuticular wax morphology of the cuticle in Sapindales , 2021, Brazilian Journal of Botany.

[20]  R. L. Esteves,et al.  Pollen morphology and evolutionary history of Sapindales , 2021, Brazilian Journal of Botany.

[21]  C. Scotese An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come In and the Seas Go Out , 2021 .

[22]  Matthew G. Johnson,et al.  A Comprehensive Phylogenomic Platform for Exploring the Angiosperm Tree of Life , 2021, bioRxiv.

[23]  D. Silvestro,et al.  Fossil data support a pre-Cretaceous origin of flowering plants , 2021, Nature Ecology & Evolution.

[24]  A. Börner,et al.  Anacardiaceae , 2022, Atlas of Stem Anatomy of Arctic and Alpine Plants Around the Globe.

[25]  C. Wirth,et al.  LCVP, The Leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants , 2020, Scientific Data.

[26]  F. Forest,et al.  New targets acquired: Improving locus recovery from the Angiosperms353 probe set , 2020, bioRxiv.

[27]  Matthew W. Hahn,et al.  New Approaches for Inferring Phylogenies in the Presence of Paralogs. , 2020, Trends in genetics : TIG.

[28]  Diego F. Morales-Briones,et al.  Analysis of Paralogs in Target Enrichment Data Pinpoints Multiple Ancient Polyploidy Events in Alchemilla s.l. (Rosaceae) , 2020, bioRxiv.

[29]  S. Magallón,et al.  The delayed and geographically heterogeneous diversification of flowering plant families , 2020, Nature Ecology & Evolution.

[30]  J. Bouchal,et al.  Combined LM and SEM study of the middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part V. Magnoliophyta 3 – Myrtales to Ericales , 2020, Grana.

[31]  Brian A. Atkinson,et al.  Fossil evidence for a Cretaceous rise of the mahogany family. , 2020, American journal of botany.

[32]  JAN T. Kim,et al.  Tackling Rapid Radiations With Targeted Sequencing , 2020, Frontiers in Plant Science.

[33]  Rebecca B. Dikow,et al.  An empirical assessment of a single family‐wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae , 2019, Applications in plant sciences.

[34]  S. Manchester,et al.  19-Million-Year-Old Spondioid Fruits from Panama Reveal a Dynamic Dispersal History for Anacardiaceae , 2019, International Journal of Plant Sciences.

[35]  Matthew A. Gitzendanner,et al.  Origin of angiosperms and the puzzle of the Jurassic gap , 2019, Nature Plants.

[36]  Sebastián Duchêne,et al.  BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis , 2018, bioRxiv.

[37]  Shusheng Hu,et al.  Mid‐Cretaceous Hothouse Climate and the Expansion of Early Angiosperms , 2018, Acta Geologica Sinica - English Edition.

[38]  W. L. Wagner,et al.  The odd one out or a hidden generalist: Hawaiian Melicope (Rutaceae) do not share traits associated with successful island colonization , 2018, Journal of Systematics and Evolution.

[39]  D. Daly,et al.  Fruit Morphology and Anatomy of the Spondioid Anacardiaceae , 2018, The Botanical Review.

[40]  Matthew G. Johnson,et al.  A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering , 2018, bioRxiv.

[41]  C. Panti Fossil leaves of subtropical lineages in the Eocene–?Oligocene of southern Patagonia , 2018, Historical Biology.

[42]  Stephen A Smith,et al.  So many genes, so little time: A practical approach to divergence-time estimation in the genomic era , 2018, PloS one.

[43]  Siavash Mirarab,et al.  TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees , 2018, BMC Genomics.

[44]  M. Suchard,et al.  Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .

[45]  Hang Sun,et al.  Complete plastome sequencing from Toona (Meliaceae) and phylogenomic analyses within Sapindales , 2018, Applications in plant sciences.

[46]  C. Lécuyer,et al.  CO2 and temperature decoupling at the million-year scale during the Cretaceous Greenhouse , 2017, Scientific Reports.

[47]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[48]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[49]  Charles S. P. Foster,et al.  Evaluating the Impact of Genomic Data and Priors on Bayesian Estimates of the Angiosperm Evolutionary Timescale , 2016, Systematic biology.

[50]  S. Buerki,et al.  Molecular phylogenetics and molecular clock dating of Sapindales based on plastid rbcL, atpB and trnL-trnF DNA sequences , 2016 .

[51]  A. Antonelli,et al.  An introduction to plant phylogenomics with a focus on palms , 2016 .

[52]  Craig Moritz,et al.  Exon capture phylogenomics: efficacy across scales of divergence , 2016, Molecular ecology resources.

[53]  Matthew G. Johnson,et al.  HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment1 , 2016, Applications in Plant Sciences.

[54]  Shin-Han Shiu,et al.  Evolution of Gene Duplication in Plants1[OPEN] , 2016, Plant Physiology.

[55]  Marek L Borowiec,et al.  AMAS: a fast tool for alignment manipulation and computing of summary statistics , 2016, PeerJ.

[56]  W. W. Hay Toward understanding Cretaceous climate—An updated review , 2016, Science China Earth Sciences.

[57]  M. Donoghue,et al.  Confluence, synnovation, and depauperons in plant diversification. , 2015, The New phytologist.

[58]  J. J. Clarkson,et al.  Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. , 2015, The New phytologist.

[59]  S. Magallón,et al.  A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. , 2015, The New phytologist.

[60]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[61]  D. Daly,et al.  To move or to evolve: contrasting patterns of intercontinental connectivity and climatic niche evolution in “Terebinthaceae” (Anacardiaceae and Burseraceae) , 2014, Front. Genet..

[62]  Tandy J. Warnow,et al.  ASTRAL: genome-scale coalescent-based species tree estimation , 2014, Bioinform..

[63]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[64]  K. Kubitzki,et al.  Flowering Plants. Eudicots , 2014, The Families and Genera of Vascular Plants.

[65]  S. Manchester,et al.  Citrus linczangensis sp. n., a Leaf Fossil of Rutaceae from the Late Miocene of Yunnan, China , 2013, International Journal of Plant Sciences.

[66]  F. Forest,et al.  The abrupt climate change at the Eocene-Oligocene boundary and the emergence of South-East Asia triggered the spread of sapindaceous lineages. , 2013, Annals of botany.

[67]  S. Manchester,et al.  Fruits of Koelreuteria (Sapindaceae) from the Cenozoic throughout the northern hemisphere: their ecological, evolutionary, and biogeographic implications. , 2013, American journal of botany.

[68]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[69]  Ziheng Yang,et al.  The unbearable uncertainty of Bayesian divergence time estimation , 2012 .

[70]  A. Antonelli,et al.  Chilean Pitavia more closely related to Oceania and Old World Rutaceae than to Neotropical groups: evidence from two cpDNA non-coding regions, with a new subfamilial classification of the family , 2012, PhytoKeys.

[71]  E. Smets,et al.  Age and historical biogeography of the pantropically distributed Spathelioideae (Rutaceae, Sapindales) , 2012 .

[72]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[73]  S. Manchester,et al.  Permineralized fruits from the late Eocene of Panama give clues of the composition of forests established early in the uplift of Central America , 2012 .

[74]  P. J. Maughan,et al.  Targeted enrichment strategies for next-generation plant biology. , 2012, American journal of botany.

[75]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic biology.

[76]  A. Couloux,et al.  Phylogeny, evolutionary trends and classification of the Spathelia-Ptaeroxylon clade: morphological and molecular insights. , 2011, Annals of botany.

[77]  Claude W. dePamphilis,et al.  Ancestral polyploidy in seed plants and angiosperms , 2011, Nature.

[78]  P. K. Endress,et al.  Flowers on the Tree of Life: Comparative floral structure and development of Nitrariaceae (Sapindales) and systematic implications , 2011 .

[79]  César A. Hidalgo,et al.  The Economic Complexity Observatory: An Analytical Tool for Understanding the Dynamics of Economic Development , 2011, Scalable Integration of Analytics and Visualization.

[80]  N. Alvarez,et al.  Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family, Xanthoceraceae. , 2010 .

[81]  S. Cevallos-Ferriz,et al.  Upper Cretaceous woods from the Olmos Formation (late Campanian-early Maastrichtian), Coahuila, Mexico. , 2010, American journal of botany.

[82]  Evgeny M. Zdobnov,et al.  The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell , 2010, Bioinform..

[83]  S. Manchester,et al.  Phylogenetic Distribution and Identification of Fin-winged Fruits , 2010, The Botanical Review.

[84]  A. Pan Rutaceae leaf fossils from the Late Oligocene (27.23 Ma) Guang River flora of northwestern Ethiopia , 2010 .

[85]  P. Grote,et al.  Tertiary leaf fossils of Mangifera (Anacardiaceae) from Li Basin, Thailand as examples of the utility of leaf marginal venation characters. , 2009, American journal of botany.

[86]  D. Soltis,et al.  Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). , 2009, Systematic biology.

[87]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[88]  D. Sankoff,et al.  Polyploidy and angiosperm diversification. , 2009, American journal of botany.

[89]  P. K. Endress,et al.  Floral structure of Kirkia (Kirkiaceae) and its position in Sapindales. , 2008, Annals of botany.

[90]  J. Pirani,et al.  Phylogeny of Rutaceae based on twononcoding regions from cpDNA. , 2008, American journal of botany.

[91]  P. Lowry,et al.  Phylogenetic Split of Malagasy and African Taxa of Protorhus and Rhus (Anacardiaceae) Based on cpDNA trnL–trnF and nrDNA ETS and ITS Sequence Data , 2008 .

[92]  Casey W. Dunn,et al.  Phyutility: a phyloinformatics tool for trees, alignments and molecular data , 2008, Bioinform..

[93]  M. Chase,et al.  An evaluation of tribes and generic relationships in Melioideae (Meliaceae) based on nuclear ITS ribosomal DNA , 2008 .

[94]  D. Soltis,et al.  Molecular Phylogeny of the Tree‐of‐Heaven Family (Simaroubaceae) Based on Chloroplast and Nuclear Markers , 2007, International Journal of Plant Sciences.

[95]  P. Waterman The current status of chemical systematics. , 2007, Phytochemistry.

[96]  S. Cevallos-Ferriz,et al.  Swietenia (Meliaceae) flower in Late Oligocene Early Miocene amber from Simojovel de Allende, Chiapas, Mexico. , 2007, American journal of botany.

[97]  V. Wilde,et al.  Fossil Cashew Nuts from the Eocene of Europe: Biogeographic Links between Africa and South America , 2007, International Journal of Plant Sciences.

[98]  S. Renner,et al.  Placing Biebersteiniaceae, a herbaceous clade of Sapindales, in a temporal and geographic context , 2007, Plant Systematics and Evolution.

[99]  M. Chase,et al.  The mahogany family "out-of-Africa": divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. , 2006, Molecular phylogenetics and evolution.

[100]  D. Daly,et al.  Poupartiopsis gen. nov. and its Context in Anacardiaceae Classification , 2006 .

[101]  M. Chase,et al.  Phylogenetic Inference in Sapindaceae sensu lato Using Plastid matK and rbcL DNA Sequences , 2005 .

[102]  R. Burnham,et al.  Miocene winged fruits of Loxopterygium (Anacardiaceae) from the Ecuadorian Andes. , 2004, American journal of botany.

[103]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[104]  M. Chase,et al.  Molecular phylogenetics of Meliaceae (Sapindales) based on nuclear and plastid DNA sequences. , 2003, American journal of botany.

[105]  S. Manchester Leaves and Fruits of Aesculus (Sapindales) from the Paleocene of North America , 2001, International Journal of Plant Sciences.

[106]  S. Manchester,et al.  Dipteronia (Sapindaceae) from the Tertiary of North America and implications for the phytogeographic history of the Aceroideae. , 2001, American journal of botany.

[107]  D. Soltis,et al.  Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. , 2000, Systematic biology.

[108]  M. Chase,et al.  Phylogenetic relationships of Rutaceae: a cladistic analysis of the subfamilies using evidence from RBC and ATP sequence variation. , 1999, American journal of botany.

[109]  M. Chase,et al.  Sapindales:Molecular delimitation and infraordinal groups , 1996 .

[110]  K. Immelman,et al.  Simaroubaceae , 1995, Plants of the Rio Grande Delta.

[111]  M. Duarte,et al.  Sapindaceae , 1995, Plants of the Rio Grande Delta.

[112]  M. Duretto,et al.  Rutaceae , 1995, Plants of the Rio Grande Delta.

[113]  P. Waterman Phytochemical Diversity in the Order Rutales , 1993 .

[114]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[115]  C. Quinn,et al.  Floral structure and evolution in the Anacardiaceae , 1991 .

[116]  C. Quinn,et al.  Pericarp structure and generic affinities in the Anacardiaceae , 1990 .

[117]  S. Manchester,et al.  A Preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota / , 1990 .

[118]  P. Gadek,et al.  Biflavonyls and the affinities of Blepharocarya , 1985 .

[119]  B. Tiffney Euodia costata (Chandler) Tiffney, (Rutaceae) from the Eocene of Southern England , 1981 .

[120]  L. Hickey,et al.  Lepidopteran Leaf Mine from the Early Eocene Wind River Formation of Northwestern Wyoming , 1975, Science.

[121]  T. D. Pennington,et al.  A generic monograph of the Meliaceae , 1975 .

[122]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.

[123]  M. Chandler The Lower Tertiary floras of southern England , 1961 .

[124]  E. M. Reid,et al.  The London clay flora , 1933 .