Robust space compaction of test responses

Presents the design of robust space compactors for reducing test data volume. These compactors are totally error-propagating for a given test test set, i.e. all possible errors are propagated irrespective of the fault model. In addition, these compactors also provide a high degree of error propagation for other test sets. All errors that affect up to three outputs of the circuit under test, as well as all errors that affect an odd number of outputs, are detected. This is irrespective of the test set or the fault model. The number of compactor outputs grows very slowly with the number of circuit outputs and size of the test set. Finally, no structural information of the circuit under test is required for fault simulation. We present experimental results on compactor design for a set of ISCAS and ITC-99 benchmark circuits.

[1]  John P. Hayes,et al.  Optimal Zero-Aliasing Space Compaction of Test Responses , 1998, IEEE Trans. Computers.

[2]  M. Ray Mercer,et al.  Limitations in predicting defect level based on stuck-at fault coverage , 1994, Proceedings of IEEE VLSI Test Symposium.

[3]  Krishnendu Chakrabarty,et al.  Synthesis of single-output space compactors with application to scan-based IP cores , 2001, ASP-DAC '01.

[4]  E. S. Sogomonyan,et al.  Design of self-testing and on-line fault detection combinational circuits with weakly independent outputs , 1993, J. Electron. Test..

[5]  Krishnendu Chakrabarty,et al.  Space compaction of test responses for IP cores using orthogonal transmission functions , 2000, Proceedings 18th IEEE VLSI Test Symposium.

[6]  Yervant Zorian,et al.  On testing of non-isolated embedded legacy cores and their surround logic , 1999, Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146).

[7]  Ozgur Sinanoglu,et al.  Space and time compaction schemes for embedded cores , 2001, Proceedings International Test Conference 2001 (Cat. No.01CH37260).

[8]  Dhiraj K. Pradhan,et al.  A New Framework for Designing and Analyzing BIST Techniques and Zero Aliasing Compression , 1991, IEEE Trans. Computers.

[9]  Michael Gössel,et al.  A new totally error propagating compactor for arbitrary cores with digital interfaces , 1999, Proceedings 17th IEEE VLSI Test Symposium (Cat. No.PR00146).

[10]  Sudhakar M. Reddy,et al.  A Data Compression Technique for Built-In Self-Test , 1988, IEEE Trans. Computers.

[11]  David Bryan,et al.  Combinational profiles of sequential benchmark circuits , 1989, IEEE International Symposium on Circuits and Systems,.

[12]  Yervant Zorian,et al.  Programmable BIST Space Compactors , 1996, IEEE Trans. Computers.

[13]  Nur A. Touba,et al.  Synthesis of zero-aliasing elementary-tree space compactors , 1998, Proceedings. 16th IEEE VLSI Test Symposium (Cat. No.98TB100231).

[14]  Jacob Savir Shrinking wide compressors [BIST] , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[16]  Krishnendu Chakrabarty Zero-aliasing space compaction using linear compactors with bounded overhead , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  John P. Hayes,et al.  Test response compaction using multiplexed parity trees , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  P. R. Stephan,et al.  SIS : A System for Sequential Circuit Synthesis , 1992 .

[19]  Krishnendu Chakrabarty,et al.  Design of parameterizable error-propagating space compactors for response observation , 2001, Proceedings 19th IEEE VLSI Test Symposium. VTS 2001.

[20]  Jacob Savir On shrinking wide compressors , 1995, Proceedings 13th IEEE VLSI Test Symposium.

[21]  Michael Gössel,et al.  A structural approach for space compaction for concurrent checking and BIST , 1998, Proceedings. 16th IEEE VLSI Test Symposium (Cat. No.98TB100231).