Dynamical State and Parameter Estimation

We discuss the problem of determining unknown fixed parameters and unobserved state variables in nonlinear models of a dynamical system using observed time series data from that system. In dynamical terms this requires synchronization of the experimental data with time series output from a model. If the model and the experimental system are chaotic, the synchronization manifold, where the data time series is equal to the model time series, may be unstable. If this occurs, then small perturbations in parameters or state variables can lead to large excursions near the synchronization manifold and produce a very complex surface in any estimation metric for those quantities. Coupling the experimental information to the model dynamics can lead to a stabilization of this manifold by reducing a positive conditional Lyapunov exponent (CLE) to a negative value. An approach called dynamical parameter estimation (DPE) addresses these instabilities and regularizes them, allowing for smooth surfaces in the space of pa...

[1]  Maciej Ogorzalek,et al.  Identification of chaotic systems based on adaptive synchronization , 1997 .

[2]  Frances K. Skinner,et al.  Parameter estimation in single-compartment neuron models using a synchronization-based method , 2007, Neurocomputing.

[3]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[4]  D. Aeyels On the number of samples necessary to achieve observability , 1981 .

[5]  Nicholas B. Tufillaro,et al.  Experimental approach to nonlinear dynamics and chaos , 1992, Studies in nonlinearity.

[6]  Debin Huang Synchronization-based estimation of all parameters of chaotic systems from time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Kevin Judd,et al.  Targeting using global models built from nonstationary data , 1997 .

[8]  R. Konnur Synchronization-based approach for estimating all model parameters of chaotic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[10]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[11]  E. Tse,et al.  Observer-estimators for discrete-time systems , 1973 .

[12]  Henk Nijmeijer,et al.  Observer-based model predictive control , 2004 .

[13]  Ulrich Parlitz,et al.  Parameter estimation for neuron models , 2003 .

[14]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[15]  Thomas Kailath,et al.  Linear Systems , 1980 .

[16]  Michael Peter Kennedy Chaos in the Colpitts oscillator , 1994 .

[17]  D. Luenberger An introduction to observers , 1971 .

[18]  John Guckenheimer,et al.  Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..

[19]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[20]  Denis Dochain,et al.  State and parameter estimation in chemical and biochemical processes: a tutorial , 2003 .

[21]  S. P. Garcia,et al.  Nearest neighbor embedding with different time delays. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Alfredo Germani,et al.  A robust observer for discrete time nonlinear systems , 1995 .

[23]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[24]  Michael A. Saunders,et al.  User’s Guide For Snopt Version 6, A Fortran Package for Large-Scale Nonlinear Programming∗ , 2002 .

[25]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[26]  Edward Ott,et al.  Using synchronization of chaos to identify the dynamics of unknown systems. , 2009, Chaos.

[27]  James M. Bower,et al.  A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.

[28]  John Doyle,et al.  Model validation: a connection between robust control and identification , 1992 .

[29]  Henry D I Abarbanel,et al.  Parameter and state estimation of experimental chaotic systems using synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  D. Luenberger Observers for multivariable systems , 1966 .

[31]  E. Lorenz Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .

[32]  Alfredo Germani,et al.  Observers for discrete-time nonlinear systems , 1993 .

[33]  P. Gill,et al.  State and parameter estimation in nonlinear systems as an optimal tracking problem , 2008 .

[34]  Arkady Pikovsky,et al.  A universal concept in nonlinear sciences , 2006 .

[35]  S. P. Garcia,et al.  Multivariate phase space reconstruction by nearest neighbor embedding with different time delays. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Liam Paninski,et al.  Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.

[37]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[38]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[39]  Ott,et al.  Observing chaos: Deducing and tracking the state of a chaotic system from limited observation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[41]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[42]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[43]  Nikolai F. Rulkov,et al.  Synchronized Action of Synaptically Coupled Chaotic Model Neurons , 1996, Neural Computation.

[44]  and Charles K. Taft Reswick,et al.  Introduction to Dynamic Systems , 1967 .

[45]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[46]  F. Takens Detecting strange attractors in turbulence , 1981 .

[47]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[48]  K. Emanuel,et al.  Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model , 1998 .

[49]  Olivier Talagrand,et al.  On extending the limits of variational assimilation in nonlinear chaotic systems , 1996 .

[50]  Henk Nijmeijer,et al.  Nonlinear discrete-Time Synchronization via Extended observers , 2001, Int. J. Bifurc. Chaos.

[51]  Ljupco Kocarev,et al.  Estimating topology of networks. , 2006, Physical review letters.

[52]  J. Bower,et al.  Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. , 1993, Journal of neurophysiology.

[53]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[54]  India,et al.  Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.

[55]  D. Aeyels GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS , 1981 .

[56]  Henry D. I. Abarbanel,et al.  Parameter estimation using balanced synchronization , 2008 .

[57]  James M. Jeanne,et al.  Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[59]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[61]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .