Dynamical State and Parameter Estimation
暂无分享,去创建一个
Mark Kostuk | Henry D. I. Abarbanel | Daniel R. Creveling | Reza Farsian | H. Abarbanel | M. Kostuk | D. Creveling | Reza Farsian
[1] Maciej Ogorzalek,et al. Identification of chaotic systems based on adaptive synchronization , 1997 .
[2] Frances K. Skinner,et al. Parameter estimation in single-compartment neuron models using a synchronization-based method , 2007, Neurocomputing.
[3] Eugenia Kalnay,et al. Atmospheric Modeling, Data Assimilation and Predictability , 2002 .
[4] D. Aeyels. On the number of samples necessary to achieve observability , 1981 .
[5] Nicholas B. Tufillaro,et al. Experimental approach to nonlinear dynamics and chaos , 1992, Studies in nonlinearity.
[6] Debin Huang. Synchronization-based estimation of all parameters of chaotic systems from time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[7] Kevin Judd,et al. Targeting using global models built from nonstationary data , 1997 .
[8] R. Konnur. Synchronization-based approach for estimating all model parameters of chaotic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[9] Y. Sasaki. SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .
[10] F. Fairman. Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.
[11] E. Tse,et al. Observer-estimators for discrete-time systems , 1973 .
[12] Henk Nijmeijer,et al. Observer-based model predictive control , 2004 .
[13] Ulrich Parlitz,et al. Parameter estimation for neuron models , 2003 .
[14] Donald E. Kirk,et al. Optimal control theory : an introduction , 1970 .
[15] Thomas Kailath,et al. Linear Systems , 1980 .
[16] Michael Peter Kennedy. Chaos in the Colpitts oscillator , 1994 .
[17] D. Luenberger. An introduction to observers , 1971 .
[18] John Guckenheimer,et al. Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..
[19] D. Luenberger. Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.
[20] Denis Dochain,et al. State and parameter estimation in chemical and biochemical processes: a tutorial , 2003 .
[21] S. P. Garcia,et al. Nearest neighbor embedding with different time delays. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] Alfredo Germani,et al. A robust observer for discrete time nonlinear systems , 1995 .
[23] Henry D. I. Abarbanel,et al. Analysis of Observed Chaotic Data , 1995 .
[24] Michael A. Saunders,et al. User’s Guide For Snopt Version 6, A Fortran Package for Large-Scale Nonlinear Programming∗ , 2002 .
[25] Jürgen Kurths,et al. Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.
[26] Edward Ott,et al. Using synchronization of chaos to identify the dynamics of unknown systems. , 2009, Chaos.
[27] James M. Bower,et al. A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.
[28] John Doyle,et al. Model validation: a connection between robust control and identification , 1992 .
[29] Henry D I Abarbanel,et al. Parameter and state estimation of experimental chaotic systems using synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[30] D. Luenberger. Observers for multivariable systems , 1966 .
[31] E. Lorenz. Predictability of Weather and Climate: Predictability – a problem partly solved , 2006 .
[32] Alfredo Germani,et al. Observers for discrete-time nonlinear systems , 1993 .
[33] P. Gill,et al. State and parameter estimation in nonlinear systems as an optimal tracking problem , 2008 .
[34] Arkady Pikovsky,et al. A universal concept in nonlinear sciences , 2006 .
[35] S. P. Garcia,et al. Multivariate phase space reconstruction by nearest neighbor embedding with different time delays. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[36] Liam Paninski,et al. Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.
[37] J. Grizzle,et al. Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..
[38] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[39] Ott,et al. Observing chaos: Deducing and tracking the state of a chaotic system from limited observation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[40] Carroll,et al. Synchronization in chaotic systems. , 1990, Physical review letters.
[41] Michael A. Saunders,et al. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..
[42] Parlitz,et al. Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.
[43] Nikolai F. Rulkov,et al. Synchronized Action of Synaptically Coupled Chaotic Model Neurons , 1996, Neural Computation.
[44] and Charles K. Taft Reswick,et al. Introduction to Dynamic Systems , 1967 .
[45] Christof Koch,et al. Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .
[46] F. Takens. Detecting strange attractors in turbulence , 1981 .
[47] Christof Koch,et al. Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .
[48] K. Emanuel,et al. Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model , 1998 .
[49] Olivier Talagrand,et al. On extending the limits of variational assimilation in nonlinear chaotic systems , 1996 .
[50] Henk Nijmeijer,et al. Nonlinear discrete-Time Synchronization via Extended observers , 2001, Int. J. Bifurc. Chaos.
[51] Ljupco Kocarev,et al. Estimating topology of networks. , 2006, Physical review letters.
[52] J. Bower,et al. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. , 1993, Journal of neurophysiology.
[53] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[54] India,et al. Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.
[55] D. Aeyels. GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS , 1981 .
[56] Henry D. I. Abarbanel,et al. Parameter estimation using balanced synchronization , 2008 .
[57] James M. Jeanne,et al. Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[58] B. Anderson,et al. Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[59] Parlitz,et al. Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[60] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[61] Henk Nijmeijer,et al. An observer looks at synchronization , 1997 .