Spacecraft for Hypervelocity Impact Research – An Overview of Capabilities, Constraints and the Challenges of Getting There

We present an introductory overview of the capabilities, constraints and challenges to be taken into account in the design of space missions for HVI research and application, focusing on related planetary defence applications, small spacecraft approaches, using our activities and projects as examples. Large lightweight deployable structure applications are discussed, for large-scale photovoltaic arrays in advanced solar-electric propulsion missions, and for solar sailing as a non-fuel-constrained method of achieving high-energy or retrograde orbit and multiple target missions. Small asteroid landers are discussed as vehicles for precursor exploration of impact target asteroids, precision target orbit determination, and for impact process monitoring that also can be deployed from sail-based missions.

[1]  Douglas O. ReVelle,et al.  Stardust—An artificial, low‐velocity “meteor” fall and recovery: 15 January 2006 , 2007 .

[2]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[3]  Mark B. Boslough Airburst warning and response , 2014 .

[4]  Norbert I. Kömle,et al.  The ROSETTA Lander anchoring system , 2003 .

[5]  Yamamoto Takayuki,et al.  World's First Mission of Solar Power Sail by IKAROS , 2010 .

[6]  Jean-Pierre Lebreton,et al.  Huygens’ entry and descent through Titan's atmosphere—Methodology and results of the trajectory reconstruction , 2007 .

[7]  Colin R. McInnes,et al.  Gossamer Roadmap Technology Reference Study for a Solar Polar Mission , 2014 .

[8]  JOHN S. Lewis Rain Of Iron And Ice: The Very Real Threat Of Comet And Asteroid Bombardment , 1996 .

[9]  R. Cargill Hall,et al.  Lunar Impact: A History of Project Ranger , 1978 .

[10]  Carsten Wiedemann,et al.  Development of in-situ Space Debris Detector , 2014 .

[11]  Bernd Dachwald,et al.  Gossamer Roadmap Technology Reference Study for a Multiple NEO Rendezvous Mission , 2014 .

[12]  Ralph Kahle Modelle und Methoden zur Abwendung von Kollisionen von Asteroiden und Kometen mit der Erde , 2005 .

[13]  K. Wittmann,et al.  Handbook of Space Technology , 2009 .

[14]  Bernd Dachwald,et al.  Gossamer Roadmap Technology Reference Study for a Sub-L1 Space Weather Mission , 2014 .

[15]  David H. Lehman,et al.  Results from the Deep Space 1 technology validation mission , 2000 .

[16]  Jeffrey Hendrikse,et al.  Concurrent AIV and Dynamic Model Strategy in Response to the New Normal of so called Death March Projects: The Engineering Venture as Experienced in the DLR MASCOT and Hayabusa-2 Project , 2014 .

[17]  K. Glassmeier,et al.  The Rosetta Mission: Flying Towards the Origin of the Solar System , 2007 .

[18]  Antje Winkel Rain Of Iron And Ice The Very Real Threat Of Comet And Asteroid Bombardment , 2016 .

[19]  Wiley J. Larson,et al.  Applied space systems engineering , 2009 .

[20]  Steven Wissler Deep Impact comet encounter: design, development, and operations of the Big Event at Tempel 1 , 2005 .

[21]  Bernd Dachwald,et al.  Head-On Impact Deflection of NEAs: A Case Study for 99942 Apophis , 2007 .

[22]  R. C. Hall,et al.  Lunar Impact: A History of Project Ranger. NASA SP-4210 , 1977 .

[23]  S. Dlr Koeln Ulamec,et al.  RoLand, a Lander System for an Active Comet , 1995 .

[24]  Performance and Derived Requirements of a Gravity Tractor serving as a Precursor to a Kinetic Impactor within the NEOShield Study Framework , 2013 .

[25]  M. Rayman The successful conclusion of the Deep Space 1 Mission: important results without a flashy title , 2002 .

[26]  Bernd Dachwald,et al.  Solar Sailing Kinetic Energy Impactor (KEI) Mission Design Tradeos for Impacting and Deflecting Asteroid 99942 Apophis , 2006 .

[27]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[28]  Bong Wie,et al.  GPU-Based Optical Navigation and Terminal Guidance Simulation of a Hypervelocity Asteroid Intercept Vehicle ( HAIV ) , 2013 .

[29]  Donald E. Brownlee,et al.  The Stardust Mission: Analyzing Samples from the Edge of the Solar System , 2014 .

[30]  M. Vasile,et al.  Experimental characterization of the thrust induced by laser ablation on an asteroid , 2013 .

[31]  Mark B. Boslough,et al.  Low-altitude airbursts and the impact threat. , 2007 .

[32]  Bernd Dachwald,et al.  Solar Sail Kinetic Energy Impactor Trajectory Optimization for an Asteroid-Deflection Mission , 2007 .

[33]  Kazuya Yoshida,et al.  Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa , 2006, Science.

[34]  Denis Estublier,et al.  Smart-1: An analysis of flight data , 2005 .

[35]  Shyam Bhaskaran,et al.  Closed Loop Terminal Guidance Navigation for a Kinetic Impactor Spacecraft , 2014 .

[36]  Bong Wie,et al.  GPU-Based Optical Navigation and Guidance for a Hypervelocity Asteroid Intercept Vehicle (HAIV) , 2013 .

[37]  Mark B. Boslough Impact decision support diagrams , 2014 .

[38]  Marc D. Rayman,et al.  MISSION DESIGN FOR DEEP SPACE 1 : A LOW-THRUST TECHNOLOGY VALIDATION MISSION , 1999 .