High-velocity features of calcium and silicon in the spectra of Type Ia supernovae

"High-velocity features" (HVFs) are spectral features in Type Ia supernovae (SNe Ia) that have minima indicating significantly higher (by greater than about 6000 km/s) velocities than typical "photospheric-velocity features" (PVFs). The PVFs are absorption features with minima indicating typical photospheric (i.e., bulk ejecta) velocities (usually ~9000-15,000 km/s near B-band maximum brightness). In this work we undertake the most in-depth study of HVFs ever performed. The dataset used herein consists of 445 low-resolution optical and near-infrared (NIR) spectra (at epochs up to 5 d past maximum brightness) of 210 low-redshift SNe Ia that follow the "Phillips relation." A series of Gaussian functions is fit to the data in order to characterise possible HVFs of Ca II H&K, Si II {\lambda}6355, and the Ca II NIR triplet. The temporal evolution of the velocities and strengths of the PVFs and HVFs of these three spectral features is investigated, as are possible correlations with other SN Ia observables. We find that while HVFs of Ca II are regularly observed (except in underluminous SNe Ia, where they are never found), HVFs of Si II {\lambda}6355 are significantly rarer, and they tend to exist at the earliest epochs and mostly in objects with large photospheric velocities. It is also shown that stronger HVFs of Si II {\lambda}6355 are found in objects that lack C II absorption at early times and that have red ultraviolet/optical colours near maximum brightness. These results lead to a self-consistent connection between the presence and strength of HVFs of Si II {\lambda}6355 and many other mutually correlated SN~Ia observables, including photospheric velocity.

[1]  Ricardo Vilalta,et al.  Exploring the spectroscopic diversity of type Ia supernovae with Deep Learning and Unsupervised Clustering , 2016, Proceedings of the International Astronomical Union.

[2]  I. Hook,et al.  Type Ia supernova spectral features in the context of their host galaxy properties , 2014, 1410.0091.

[3]  K. Shen,et al.  THE INITIATION AND PROPAGATION OF HELIUM DETONATIONS IN WHITE DWARF ENVELOPES , 2014, 1409.3568.

[4]  Gautham Narayan,et al.  THE CHANGING FRACTIONS OF TYPE IA SUPERNOVA NUV–OPTICAL SUBCLASSES WITH REDSHIFT , 2014, 1408.1706.

[5]  Peter E. Nugent,et al.  Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory , 2014, 1408.1430.

[6]  Xiaofeng Wang,et al.  OPTICAL AND ULTRAVIOLET OBSERVATIONS OF THE NARROW-LINED TYPE Ia SN 2012fr IN NGC 1365 , 2014, 1403.0398.

[7]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[8]  Filippo Mannucci,et al.  Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.

[9]  I. Hook,et al.  The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory , 2013, 1311.6344.

[10]  Mohan Ganeshalingam,et al.  High-velocity features in Type Ia supernova spectra , 2013, 1307.0563.

[11]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[12]  E. Ofek,et al.  A statistical analysis of circumstellar material in type Ia supernovae , 2013, 1308.3899.

[13]  William H. Lee,et al.  SN 2000cx and SN 2013bh: Extremely Rare, Nearly Twin Type Ia Supernovae , 2013, 1307.3555.

[14]  S. E. Persson,et al.  SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT , 2013, 1305.6997.

[15]  Xiaofeng Wang,et al.  Evidence for Two Distinct Populations of Type Ia Supernovae , 2013, Science.

[16]  P. Brown,et al.  HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig , 2013, 1302.3537.

[17]  Daniel J. Carson,et al.  SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU , 2013, 1302.2926.

[18]  C. Tao,et al.  Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory , 2013, 1302.1292.

[19]  J. Maund,et al.  Spectropolarimetry of the Type Ia supernova 2012fr , 2013, 1302.0166.

[20]  R. Foley,et al.  On spectral line profiles in Type Ia supernova spectra , 2012, 1212.6261.

[21]  S. Blondin,et al.  One-dimensional delayed-detonation models of Type Ia supernovae: confrontation to observations at bolometric maximum , 2012, 1211.5892.

[22]  A. Filippenko,et al.  Berkeley Supernova Ia Program – V. Late-time spectra of Type Ia Supernovae , 2012, 1211.0279.

[23]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[24]  J. Wheeler,et al.  Testing supernovae Ia distance measurement methods with SN 2011fe , 2012, 1207.4310.

[25]  M. Graham,et al.  THE VERY YOUNG TYPE Ia SUPERNOVA 2012cg: DISCOVERY AND EARLY-TIME FOLLOW-UP OBSERVATIONS , 2012, 1206.1328.

[26]  R. Ellis,et al.  Hubble Space Telescope studies of low‐redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends , 2012, 1205.7040.

[27]  E. Ofek,et al.  ANALYSIS OF THE EARLY-TIME OPTICAL SPECTRA OF SN 2011fe IN M101 , 2012, 1205.6011.

[28]  W. M. Wood-Vasey,et al.  CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE , 2012, 1205.4493.

[29]  R. Kirshner,et al.  LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS , 2012, 1203.2916.

[30]  A. Filippenko,et al.  Berkeley Supernova Ia Program – IV. Carbon detection in early-time optical spectra of Type Ia supernovae , 2012, 1202.3788.

[31]  A. Filippenko,et al.  Berkeley Supernova Ia Program – II. Initial analysis of spectra obtained near maximum brightness , 2012, 1202.2129.

[32]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[33]  A. Riess,et al.  THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE , 2000, The Astronomical Journal.

[34]  Nathaniel R. Butler,et al.  A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.

[35]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[36]  S. E. Persson,et al.  UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE , 2011, 1110.3789.

[37]  C. Tao,et al.  TYPE Ia SUPERNOVA CARBON FOOTPRINTS , 2011, 1109.1312.

[38]  R. Beaton,et al.  VERY EARLY ULTRAVIOLET AND OPTICAL OBSERVATIONS OF THE TYPE Ia SUPERNOVA 2009ig , 2011, 1109.0987.

[39]  R. M. Quimby,et al.  Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features , 2011, Science.

[40]  Robert P. Kirshner,et al.  VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE , 2011, 1107.3555.

[41]  A. Filippenko,et al.  The rise-time distribution of nearby Type Ia supernovae , 2011, 1107.2404.

[42]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[43]  Robert A. Fesen,et al.  A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA , 2011, 1103.1671.

[44]  J. Frieman,et al.  Line Profiles of Intermediate Redshift Type Ia Supernovae , 2011, 1103.2497.

[45]  Juan C. Meza,et al.  SYNAPPS: Data-Driven Analysis for Supernova Spectroscopy , 2011 .

[46]  R. Nichol,et al.  Spectral properties of Type Ia supernovae up to z ~ 0.3 , 2010, 1011.6227.

[47]  Daniel Kasen,et al.  MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES , 2010, 1011.4517.

[48]  D. Howell,et al.  Type Ia supernovae as stellar endpoints and cosmological tools. , 2010, Nature communications.

[49]  R. Kirshner,et al.  Do spectra improve distance measurements of Type Ia supernovae , 2010, 1012.0005.

[50]  T. Pritchard,et al.  RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE , 2010 .

[51]  M. Sullivan,et al.  Supernova Legacy Survey: using spectral signatures to improve Type Ia supernovae as distance indicators , 2010, 1008.2308.

[52]  J. Sollerman,et al.  An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae , 2010, Nature.

[53]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[54]  Adam A. Miller,et al.  Fourteen months of observations of the possible super-Chandrasekhar mass Type Ia Supernova 2009dc , 2010, 1003.2417.

[55]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2010, 1108.3108.

[56]  J. Maund,et al.  VLT spectropolarimetry of the fast expanding type Ia SN 2006X , 2009, 0909.5564.

[57]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[58]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[59]  Caltech,et al.  THE GOLDEN STANDARD TYPE Ia SUPERNOVA 2005cf: OBSERVATIONS FROM THE ULTRAVIOLET TO THE NEAR-INFRARED WAVEBANDS , 2008, 0811.1205.

[60]  S. Jha,et al.  Luminosity Indicators in the Ultraviolet Spectra of Type Ia Supernovae , 2008, 0803.1181.

[61]  R. Kotak,et al.  The Outermost Ejecta of Type Ia Supernovae , 2007, 0712.2823.

[62]  R. Chornock,et al.  DEVIATIONS FROM AXISYMMETRY REVEALED BY LINE POLARIZATION IN THE NORMAL TYPE Ia SUPERNOVA 2004S , 2006, astro-ph/0609405.

[63]  D. Rabinowitz,et al.  NEARBY SUPERNOVA FACTORY OBSERVATIONS OF SN 2007if: FIRST TOTAL MASS MEASUREMENT OF A SUPER-CHANDRASEKHAR-MASS PROGENITOR , 2010, 1003.2217.

[64]  E. L. Robinson,et al.  A CATALOG OF NEAR-INFRARED SPECTRA FROM TYPE Ia SUPERNOVAE , 2007, 0906.4085.

[65]  Berkeley,et al.  SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae , 2007, 0709.0859.

[66]  Kevin Krisciunas,et al.  Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova SN 2006X in M100 , 2007, 0708.0140.

[67]  M. S. Burns,et al.  Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study , 2007, astro-ph/0703629.

[68]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[69]  J. Neill,et al.  The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.

[70]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[71]  P. Mazzali,et al.  Three-dimensional Models for High-Velocity Features in Type Ia Supernovae , 2006, astro-ph/0603184.

[72]  S. Jha,et al.  Late-Time Spectroscopy of SN 2002cx: The Prototype of a New Subclass of Type Ia Supernovae , 2006, astro-ph/0602250.

[73]  G. Smadja,et al.  Type Ia Supernova Spectral Line Ratios as Luminosity Indicators , 2005, astro-ph/0512229.

[74]  E. Rykoff,et al.  SN 2005cg: Explosion Physics and Circumstellar Interaction of a Normal Type Ia Supernova in a Low-Luminosity Host , 2005, astro-ph/0509304.

[75]  Warren R. Brown,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005, astro-ph/0509234.

[76]  R. Foley,et al.  Evidence for Spectropolarimetric Diversity in Type Ia Supernovae , 2005, astro-ph/0506470.

[77]  D. Branch,et al.  Comparative Direct Analysis of Type Ia Supernova Spectra. I. SN 1994D , 2005, 0712.2436.

[78]  R. Kotak,et al.  High-Velocity Features: A Ubiquitous Property of Type Ia Supernovae , 2005, astro-ph/0502531.

[79]  R. Kotak,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2004, astro-ph/0411059.

[80]  Lifan Wang,et al.  Premaximum Spectropolarimetry of the Type Ia SN 2004dt , 2004, astro-ph/0409593.

[81]  G. Folatelli Spectral homogeneity of type Ia supernovae , 2004 .

[82]  M. S. Burns,et al.  Spectroscopic Observations and Analysis of the Peculiar SN 1999aa , 2004, astro-ph/0404393.

[83]  M. Turatto,et al.  Supernova 2002bo: inadequacy of the single parameter description , 2003, astro-ph/0309665.

[84]  L. Wang,et al.  SN 2003du: Signatures of the Circumstellar Environment in a Normal Type Ia Supernova? , 2003, astro-ph/0309639.

[85]  D. Kasen,et al.  Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a Normal Type Ia Supernova , 2003, astro-ph/0303397.

[86]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[87]  R. Thomas,et al.  On the Geometry of the High-Velocity Ejecta of the Peculiar Type Ia Supernova 2000cx , 2003, astro-ph/0302260.

[88]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[89]  D. Kasen,et al.  Analysis of the Flux and Polarization Spectra of the Type Ia Supernova SN 2001el: Exploring the Geometry of the High-Velocity Ejecta , 2003, astro-ph/0301312.

[90]  W. M. Wood-Vasey,et al.  The Type Ia Supernova 1999aw: A Probable 1999aa-like Event in a Low-Luminosity Host Galaxy , 2002, astro-ph/0207409.

[91]  E. Ofek,et al.  The Unique Type Ia Supernova 2000cx in NGC 524 , 2001, astro-ph/0107318.

[92]  Alexei V. Filippenko,et al.  A High Intrinsic Peculiarity Rate among Type Ia Supernovae , 2000, astro-ph/0006292.

[93]  A. Filippenko,et al.  On the High-Velocity Ejecta of the Type Ia Supernova SN 1994D , 1999, astro-ph/9903333.

[94]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[95]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[96]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[97]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[98]  P. Nugent,et al.  Evidence for a High-Velocity Carbon-rich Layer in the Type Ia SN 1990N , 1997 .

[99]  P. Nugent Evidence for a Spectroscopic Sequence Among SNe IA , 1995 .

[100]  P. Nugent,et al.  Evidence for a Spectroscopic Sequence among Type Ia Supernovae , 1995, astro-ph/9510004.

[101]  Nicholas B. Suntzeff,et al.  A Hubble diagram of distant type IA supernovae , 1993 .

[102]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[103]  David Branch,et al.  Spectroscopic differences between supernovae of type Ia in early-type and in late-type galaxies , 1993 .

[104]  Jan Peters,et al.  SN 1991bg - A type Ia supernova with a difference , 1993 .

[105]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[106]  R. Kirshner,et al.  SN 1991T: Further Evidence of the Heterogeneous Nature of Type IA Supernovae , 1992 .

[107]  D. Schlegel,et al.  The peculiar type Ia SN 1991T : detonation of a white dwarf ? , 1992 .

[108]  D. Jeffery The Sobolev-P method: a generalization of the Sobolev method for the treatment of the polarization state of radiation and the polarizing effect of resonance line scattering , 1989 .

[109]  K. Nomoto,et al.  Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae , 1984 .

[110]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[111]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[112]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[113]  J. Castor Spectral line formation in Wolf-Rayet envelopes. , 1970 .

[114]  S. Colgate,et al.  EARLY SUPERNOVA LUMINOSITY. , 1969 .

[115]  S. Gaposchkin,et al.  Moving Envelopes of Stars , 1960 .

[116]  William A. Fowler,et al.  Nucleosynthesis in Supernovae. , 1960 .