Kardiale Funktionsanalyse mittels MRT

ZusammenfassungWeltweit gehören Herz-Kreislauf-Erkrankungen zu den häufigsten Todesursachen. Auch im 21. Jahrhundert werden diese Erkrankungen das Erkrankungsspektrum und die Todesursachenstatistik anführen. Eine genaue Beurteilung der kardialen Funktion ist für die Therapieplanung und -überwachung unerlässlich. In diesem Beitrag wird der Stellenwert der MRT bei der Beurteilung der kardialen Funktion erörtert. Als Standard der kardialen Funktionsanalyse kann heute die Cine-MRT angesehen werden, wofür man überwiegend EGK-getriggerte Steady-state-free-precession- (SSFP-)Sequenzen einsetzt, die sich durch kurze Messzeiten und einen hervorragenden Kontrast zwischen Myokard und Ventrikelkavum auszeichnen. Voraussetzung für kardiale Funktionsuntersuchungen ist eine exakte Einstellung der Planungsschichten und basierend darauf die volumendeckende Darstellung des gesamten Ventrikels in Kurzachsenschnitten. Zur Funktionsanalyse ist dann mit Hilfe einer entsprechenden Nachverarbeitungssoftware die manuelle oder semiautomatische Segmentierung der endo- und epikardialen Konturen erforderlich. Damit können die enddiastolischen und -systolischen Volumina gemessen bzw. die Auswurffraktion berechnet sowie segmentale Wandbewegungsstörungen detektiert werden.AbstractCardiovascular diseases (CVD) are among the leading causes of death worldwide. Even in the 21st century CVD will still be the most frequent cause of morbidity and mortality. Precise evaluation of cardiac function is therefore mandatory for therapy planning and monitoring. In this article the contribution of MRI-based analysis of cardiac function will be addressed. Nowadays cine-MRI is considered as the standard of reference (SOR) in cardiac functional analysis. ECG-triggered steady-state free precession (SSFP) sequences are mainly used as they stand out due to short acquisition times and excellent contrast between the myocardium and the ventricular cavity. An indispensible requirement for cardiac functional analysis is an exact planning of the examination and based on that the coverage of the whole ventricle in short axial slices. By means of dedicated post-processing software, manual or semi-automatic segmentation of the endocardial and epicardial contours is necessary for functional analysis. In this way end-diastolic volume (EDV), end-systolic volume (ESV) and the ejection fraction (EF) are defined and regional wall motion abnormalities (RWMA) can be detected.

[1]  S. Plein,et al.  Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady‐state free precession imaging sequences , 2003, Journal of magnetic resonance imaging : JMRI.

[2]  J. Wansapura,et al.  Frequency scouting for cardiac imaging with SSFP at 3 Tesla , 2006, Pediatric Radiology.

[3]  S. Schoenberg,et al.  Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function , 2006, European Radiology.

[4]  Kay Nehrke,et al.  Rapid and complete coronary arterial tree visualization with magnetic resonance imaging: feasibility and diagnostic performance. , 2005, European heart journal.

[5]  James C Moon,et al.  Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. , 2004, American heart journal.

[6]  D L Parker,et al.  Determination of left ventricular volume and mass with use of biphasic spin-echo MR imaging: comparison with cine MR. , 1990, Radiology.

[7]  P. Weale,et al.  Accelerated two- and three-dimensional cine MR imaging of the heart by using a 32-channel coil. , 2010, Radiology.

[8]  S. Schoenberg,et al.  Cardiac Steady-State Free Precession CINE Magnetic Resonance Imaging at 3.0 Tesla: Impact of Parallel Imaging Acceleration on Volumetric Accuracy and Signal Parameters , 2006, Investigative radiology.

[9]  D. Pennell,et al.  Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. , 2002, The American journal of cardiology.

[10]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[11]  D J Pennell,et al.  Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. , 2000, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[12]  S. Schoenberg,et al.  Single breath-hold real-time cine MR imaging: improved temporal resolution using generalized autocalibrating partially parallel acquisition (GRAPPA) algorithm , 2003, European Radiology.

[13]  A. Khera,et al.  Interstudy reproducibility of SSFP cine magnetic resonance: Impact of magnetic field strength and parallel imaging , 2008, Journal of magnetic resonance imaging : JMRI.

[14]  Mark E Ladd,et al.  Assessment of ventricular function with single breath-hold real-time steady-state free precession cine MR imaging. , 2002, AJR. American journal of roentgenology.

[15]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Circulation.

[16]  C B Higgins,et al.  Which standard has the gold? , 1992, Journal of the American College of Cardiology.

[17]  C. Mathers,et al.  Projections of Global Mortality and Burden of Disease from 2002 to 2030 , 2006, PLoS medicine.

[18]  Carmel Hayes,et al.  Unsupervised Fully Automated Inline Analysis of Global Left Ventricular Function in CINE MR Imaging , 2009, Investigative radiology.

[19]  V L Morgan,et al.  Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. , 1999, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[20]  Stefan O Schoenberg,et al.  Feasibility of single breath-hold left ventricular function with 3 Tesla TSENSE acquisition and 3D modeling analysis , 2008, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[21]  J. Debatin,et al.  MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. , 2001, Radiology.

[22]  R. Edelman,et al.  Accelerated cardiac imaging using the SMASH technique. , 1999, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[23]  E. Fleck,et al.  Functional cardiac MR imaging with steady‐state free precession (SSFP) significantly improves endocardial border delineation without contrast agents , 2001, Journal of magnetic resonance imaging : JMRI.

[24]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[25]  Kieran Clarke,et al.  Determination of cardiac volumes and mass with FLASH and SSFP cine sequences at 1.5 vs. 3 Tesla: A validation study , 2006, Journal of magnetic resonance imaging : JMRI.

[26]  K P Pruessmann,et al.  Sensitivity encoded cardiac MRI. , 2001, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.