Integrated modelling of the current profile in steady-state and hybrid ITER scenarios

We present integrated modelling of steady-state and hybrid scenarios for ITER parameters using several predictive transport codes. These employ models for non-inductive current drive sources in conjunction with various theory-based and semi-empirical transport models. In conjunction with the simulation effort, the current drive models are being evaluated in a series of cross-code and code-experiment comparisons under ITER-relevant conditions. New benchmark evaluations of current drive from injection of neutral beams (NBCD), electron cyclotron waves (ECCD) and lower hybrid waves (LHCD) are reported. Simulations using several transport modelling codes self-consistently calculate the heating and current drive sources using ITER design parameters. Operating constraints are also taken into account, although the calculations reported here still require further refinement. The modelling addresses both the final stationary state and dynamic access to it. The simulations indicate that generation and control of internal and edge barriers to access and maintain high confinement will be a major undertaking for future simulations, as well as a challenge for the ITER steady-state and hybrid experimental programme.

[1]  Tihiro Ohkawa,et al.  New methods of driving plasma current in fusion devices , 1970 .

[2]  John D. Gaffey,et al.  Energetic ion distribution resulting from neutral beam injection in tokamaks , 1976, Journal of Plasma Physics.

[3]  E. M. Jones,et al.  The effect of trapped electrons on beam driven currents in toroidal plasmas , 1980 .

[4]  J. G. Cordey,et al.  Beam‐induced currents in toroidal plasmas of arbitrary aspect ratio , 1980 .

[5]  S. Hirshman,et al.  Neoclassical transport of impurities in tokamak plasmas , 1981 .

[6]  Clifford E Singer,et al.  OPTIMIZATION OF STEADY-STATE BEAM-DRIVEN TOKAMAK REACTORS. , 1983 .

[7]  R. L. Meyer,et al.  Improving current generation in a tokamak by electron cyclotron waves , 1985 .

[8]  S. Jardin,et al.  Dynamic modeling of transport and positional control of tokamaks , 1986 .

[9]  R. Cohen Effect of trapped electrons on current drive , 1987 .

[10]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[11]  Douglass E. Post,et al.  Penetration of energetic neutral beams into fusion plasmas , 1989 .

[12]  J. Weiland,et al.  Simulation of toroidal drift mode turbulence driven by temperature gradients and electron trapping , 1990 .

[13]  D. Farina,et al.  Adiabatic nonlinear interaction of a localized electron cyclotron wave with a plasma , 1991 .

[14]  R. S. Devoto,et al.  Numerical analysis of 2D MHD equilibrium with non-inductive plasma current in tokamaks , 1992 .

[15]  Paul T. Bonoli,et al.  Modelling of lower hybrid current drive in self-consistent elongated tokamak equilibria , 1992 .

[16]  S. Cirant,et al.  Wave dispersoin and resonant deposition profiles of electron-cyclotron Gaussian beams in toroidal plasmas , 1995, Journal of Plasma Physics.

[17]  Y. Feng,et al.  New, simplified technique for calculating particle source rates due to neutral beam injection into tokamaks , 1995 .

[18]  Enzo Lazzaro,et al.  Self‐diffraction effects of electron cyclotron Gaussian beams on noninductively driven current in the International Thermonuclear Experimental Reactor tokamak , 1996 .

[19]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[20]  G. Giruzzi,et al.  Investigation of lower hybrid wave damping in the PBX-M tokamak , 1997 .

[21]  F. Hinton,et al.  Trapped electron correction to beam driven current in general tokamak equilibria , 1997 .

[22]  Akira Sakasai,et al.  Attenuation of high-energy neutral hydrogen beams in high-density plasmas , 1998 .

[23]  T. C. Luce,et al.  Electron cyclotron current drive efficiency in general tokamak geometry , 2003 .

[24]  Y. Peysson,et al.  An approximate factorization procedure for solving nine-point elliptic difference equations Application for a fast 2-D relativistic Fokker-Planck solver , 1998 .

[25]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[26]  Current Drive Chapter 6: Plasma auxiliary heating and current drive , 1999 .

[27]  C. D. Challis,et al.  Predictive modelling of JET optimized shear discharges , 1999 .

[28]  P. Barabaschi,et al.  ITER: opportunity of burning plasma studies , 2001 .

[29]  G. V. Pereverzev,et al.  TORBEAM, a beam tracing code for electron-cyclotron waves in tokamak plasmas , 2001 .

[30]  G. V. Pereverzev,et al.  EC Beam Tracing in Fusion Plasmas , 2001 .

[31]  M. Takechi,et al.  Reactor relevant current drive and heating by N-NBI on JT-60U , 2001 .

[32]  L. L. Lao,et al.  Detailed measurements of the electron cyclotron current drive efficiency on DIII-D , 2002 .

[33]  R. V. Budny,et al.  Fusion alpha parameters in tokamaks with high DT fusion rates , 2002 .

[34]  Y Ikeda,et al.  Evolution of lower-hybrid-driven current during the formation of an internal transport barrier. , 2002, Physical review letters.

[35]  F. Imbeaux,et al.  Simulations of steady-state scenarios for Tore Supra using the CRONOS code , 2003 .

[36]  S. Kasilov,et al.  Kinetic modeling of nonlinear electron cyclotron resonance heating , 2003 .

[37]  L. L. Lao,et al.  Physics and control of ELMing H-mode negative-central-shear advanced tokamak ITER scenario based on experimental profiles from DIII-D , 2003 .

[38]  P. T. Bonoli,et al.  Lower Hybrid Current Drive: An Overview of Simulation Models, Benchmarking with Experiment, and Predictions for Future Devices , 2003 .

[39]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[40]  L. Lao,et al.  Measurement of pressure-gradient-driven currents in tokamak edge plasmas. , 2004, Physical review letters.

[41]  E. Giovannozzi,et al.  Chapter 3: Internal Transport Barrier Studies in the FTU , 2004 .

[42]  M. Wade,et al.  Validation of neoclassical bootstrap current models in the edge of an H-mode plasma. , 2004, Physical review letters.

[43]  O. Naito,et al.  Heating and current drive by electron cyclotron waves in JT-60U , 2004 .

[44]  L. L. Lao,et al.  ELMs and constraints on the H-mode pedestal: peeling–ballooning stability calculation and comparison with experiment , 2004 .

[45]  L. L. Lao,et al.  Toroidal Electric Field Effect and Non-Linear Effect on Electron Cyclotron Current Drive in the JT-60U , 2004 .

[46]  L. L. Lao,et al.  100% noninductive operation at high beta using off-axis ECCD in DIII-D , 2005 .