Miocene isotope reference section, Deep Sea Drilling Project Site 608: An evaluation of isotope and biostratigraphic resolution

We developed an isotope (87Sr/86Sr, δ18O) reference section for the uppermost Oligocene to lower upper Miocene (ca. 25–8 Ma) at Site 608 in the northeastern North Atlantic. This site contains the least ambiguous magnetostratigraphic record of Miocene polarity changes available, providing direct correlations to the Geomagnetic Polarity Time Scale (GPTS). We integrate biostratigraphic, magnetostratigraphic, Sr isotope, and stable isotope data to provide a reference section for Miocene isotope fluctuations. The direct correlation of isotopes and biostratigraphy to the Geomagnetic Polarity Time Scale (GPTS) provides relatively precise age estimates. We use these age estimates to evaluate the timing of first and last occurrences of planktonic foraminifera, and conclude that many of these are synchronous within a 0.5 m.y. resolution between subtropical Site 563 (33°N) and high-latitude Site 608 (43°N). In addition, we use this chronology to estimate the ages of previously established Miocene oxygen isotope Zones Mi 1 through Mi 7 and to compare the Sr isotope record at Site 608 with previously published 87Sr/86Sr records. We approximate latest Oligocene to early late Miocene (25–8 Ma) Sr isotope changes with two linear regressions. The rate of increase of 87Sr/86Sr was high from the latest Oligocene (∼25 Ma) to earliest middle Miocene (∼15 Ma), with an estimated rate of 0.000059/m.y. Our ability to reproduce Sr isotope measurements is ±0.000030 or better, yielding a stratigraphic resolution of as good as ±0.5 m.y. for this interval. The rate of change was much lower from about 15 to 8 Ma (on average, 0.000013/m.y.), yielding Sr isotope stratigraphic resolution of worse than ±2.3 m.y. The causes of the late Eocene to Miocene 87Sr/86Sr increases are not known. We speculate that a moderate 87Sr/86Sr increase (0.000030/m.y) which occurred during the late Eocene-latest Oligocene can be explained by intermittent glaciations and deglaciations of the Antarctic continent. These pulse-like changes in the input of glacial weathering products yield what appears to be a monotonic, linear increase. The increase in the frequency of glaciations during the latest Oligocene-early Miocene can explain the higher rate of change of 87Sr/86Sr at this time. We speculate that by the middle Miocene, the development of a permanent east Antarctica ice sheet resulted in decreased input of glacial weathering products and a lower rate of 87Sr/86Sr change. Appendix 1 is available with entire article on microfiche.Order from American Geophysical Union, 2000 FloridaAvenue N.W., Washington, D.C. 20009. Document P90-001;$2.50. Payment must accompany order.

[1]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[2]  D. Hodell,et al.  Variation in the strontium isotopic composition of seawater (8 Ma to present) : Implications for chemical weathering rates and dissolved fluxes to the oceans , 1990 .

[3]  J. Joyce,et al.  High‐resolution planktic stable isotope record and spectral analysis for the last 5.35 M.Y.: Ocean Drilling Program Site 625 northeast Gulf of Mexico , 1990 .

[4]  D. DePaolo,et al.  Seawater Strontium Isotopic Variations from 2.5 Million Years Ago to the Present , 1990, Science.

[5]  P. Molnar,et al.  Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? , 1990, Nature.

[6]  L. Stott,et al.  Proteus and Proto-Oceanus: Ancestral Paleogene Oceans as Revealed from Antarctic Stable Isotopic Results; ODP Leg 113 , 1990 .

[7]  K. Miller,et al.  High-latitude application of 87Sr/86Sr: Correlation of Nuwok beds on North Slope, Alaska, to standard Oligocene chronostratigraphy , 1990 .

[8]  K. Miller,et al.  Eocene-Oligocene sea-level changes on the New Jersey coastal plain linked to the deep-sea record , 1990 .

[9]  W. Prell,et al.  Late Cenozoic uplift in southern Asia and the American West: Rationale for general circulation modeling experiments , 1989 .

[10]  M. Bender,et al.  The Oligocene marine microfossil record: Age assessments using strontium isotopes: Paleoceanography , 1989 .

[11]  D. Martinson,et al.  Late Pliocene variation in northern hemisphere ice sheets and North Atlantic deep water circulation , 1989 .

[12]  Iugs,et al.  Stratigraphic Commission Accelerates Progress, 1984 to 1989 , 1989 .

[13]  Judith A McKenzie,et al.  Strontium isotope stratigraphy and geochemistry of the late Neogene ocean , 1989 .

[14]  P. Smalley,et al.  High-Resolution Dating of Cenozoic Sediments from Northern North Sea Using 87Sr/86Sr Stratigraphy , 1989 .

[15]  D. Dahl,et al.  The Cenozoic seawater 87Sr/86Sr curve: Data review and implications for correlation of marine strata , 1988 .

[16]  F. Richter,et al.  Diagenesis and Sr isotopic evolution of seawater using data from DSDP 590B and 575 , 1988 .

[17]  D. Mueller,et al.  Application of strontium isotopes to late Miocene-early Pliocene stratigraphy , 1988 .

[18]  W. Berggren,et al.  Paleogene tropical planktonic foraminiferal biostratigraphy and magnetobiochronology , 1988 .

[19]  M. Raymo,et al.  Influence of late Cenozoic mountain building on ocean geochemical cycles , 1988 .

[20]  H. Dowsett Diachrony of Late Neogene microfossils in the southwest Pacific Ocean: Application of the graphic correlation method , 1988 .

[21]  K. Miller,et al.  Upper Eocene to Oligocene isotope (87Sr/86Sr, δ18O, δ13C) standard section, Deep Sea Drilling Project Site 522 , 1988 .

[22]  R. Halley,et al.  Strontium-isotope stratigraphy of Enewetak Atoll , 1988 .

[23]  K. Miller,et al.  Testing Cenozoic Eustatic Changes: The Critical Role of Stratigraphic Resolution , 1987 .

[24]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[25]  R. Fairbanks,et al.  Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion , 1987 .

[26]  Maureen E. Raymo,et al.  Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets , 1986 .

[27]  H. Elderfield Strontium isotope stratigraphy , 1986 .

[28]  J. Cowie Guidelines for Boundary Stratotypes , 1986 .

[29]  M. Bender,et al.  Evolution of the Ratio of Strontium-87 to Strontium-86 in Seawater from Cretaceous to Present , 1986, Science.

[30]  D. DePaolo Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. [Deep Sea Drilling Project] , 1986 .

[31]  R. E. Denison,et al.  Construction of the seawater 87Sr86Sr curve for the cenozoic and cretaceous: Supporting data , 1985 .

[32]  N. Pisias,et al.  Stable Isotope and Calcium Carbonate Records from Hydraulic Piston Cored Hole 574A: High-Resolution Records from the Middle Miocene , 1985 .

[33]  W. Berggren,et al.  Oligocene-Miocene biostratigraphy, magnetostratigraphy, and isotopic stratigraphy of the western North Atlantic , 1985 .

[34]  D. DePaolo,et al.  High-Resolution Stratigraphy with Strontium Isotopes , 1985, Science.

[35]  R. M. Owen,et al.  Sea-floor hydrothermal activity links climate to tectonics: the Eocene carbon dioxide greenhouse. , 1985, Science.

[36]  W. Berggren,et al.  The Eocene/Oligocene Boundary Event in the Deep Sea , 1984, Science.

[37]  L. Kristjánsson,et al.  Magnetostratigraphy and geochronology of northwest Iceland , 1984 .

[38]  W. Berggren,et al.  Neogene Magnetobiostratigraphy of Deep Sea Drilling Project Site 516 (Rio Grande Rise, South Atlantic) , 1983 .

[39]  C. Pujol Cenozoic Planktonic Foraminiferal Biostratigraphy of the Southwestern Atlantic (Rio Grande Rise): Deep Sea Drilling Project Leg 72 , 1983 .

[40]  J. LaBrecque,et al.  The magnetostratigraphy of Leg 73 sediments , 1983 .

[41]  J. Killingley Effects of diagenetic recrystallization on 18O/16O values of deep-sea sediments , 1983, Nature.

[42]  R. E. Denison,et al.  Variation of seawater 87Sr/86Sr throughout Phanerozoic time , 1982 .

[43]  R. Poore,et al.  Late Eocene–Oligocene magnetostratigraphy and biostratigraphy at South Atlantic DSDP Site 522 , 1982 .

[44]  DOUGLAS F. Williams,et al.  Strontium-calcium ratios in Cenozoic planktonic foraminifera , 1982 .

[45]  W. Lowrie,et al.  Paleogene magnetic stratigraphy in Umbrian pelagic carbonate rocks: The Contessa sections, Gubbio , 1982 .

[46]  G. Keller,et al.  Miocene benthic foraminiferal isotope records: A synthesis , 1981 .

[47]  S. Savin,et al.  Miocene stable isotope record: a detailed deep pacific ocean study and its paleoclimatic implications. , 1981, Science.

[48]  L. Keigwin Palaeoceanographic change in the Pacific at the Eocene–Oligocene boundary , 1980, Nature.

[49]  N. Opdyke,et al.  Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events , 1980 .

[50]  J. Kennett Cenozoic evolution of Antarctic glaciation the Circum-Antarctic Ocean and their impact on global paleoceanography , 1977 .

[51]  F. G. Stehli,et al.  Tertiary marine paleotemperatures , 1975 .

[52]  S. E. Hart,et al.  Clinopyroxene-matrix partitioning of K, Rb, Cs, Sr and Ba , 1974 .

[53]  Nicholas J Shackleton,et al.  Oxygen Isotope and Palaeomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 Year and 106 Year Scale , 1973, Quaternary Research.

[54]  D. York The best isochron , 1967 .

[55]  K. Miller,et al.  45. MIOCENE STABLE ISOTOPE STRATIGRAPHY, SITE 747, KERGUELEN PLATEAU1 , 1992 .

[56]  R. Fairbanks,et al.  Benthic Foraminiferal Carbon Isotopic Records and the Development of Abyssal Circulation in the Eastern North Atlantic , 1987 .

[57]  T. Takayama Coccolith biostratigraphy of the North Atlantic Ocean, Deep Sea Drilling Project Leg 94. , 1987 .

[58]  B. Clement The magneto-stratigraphy of Leg 94 sediments , 1987 .

[59]  W. Berggren,et al.  The Neogene: Part 2 Neogene geochronology and chronostratigraphy , 1985, Geological Society, London, Memoirs.

[60]  J. Kennett The Miocene Ocean: Paleoceanography and Biogeography , 1985 .

[61]  W. Berger,et al.  Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean , 1985 .

[62]  J. Mckenzie,et al.  A Paleoclimatic and Paleoceanographic Record of the Paleogene in the Central South Atlantic (Leg 73, Sites 522, 523, and 524) , 1984 .

[63]  J. LaBrecque,et al.  Magnetostratigraphy of Leg 73 Sediments , 1984 .

[64]  W. Berggren,et al.  49. MAGNETOBIOSTRATIGRAPHY OF DEEP SEA DRILLING PROJECT LEG 72, SITES 515-518, RIO GRANDE RISE (SOUTH ATLANTIC) , 1982 .

[65]  N. Shackleton,et al.  Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281 , 1975 .

[66]  E. Martini Standard Tertiary and Quaternary calcareous nannoplankton zonation , 1971 .

[67]  W. H. Blow Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy , 1969 .