THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES

The structure of the M87 jet, from milliarcsecond to arcsecond scales, is extensively investigated, utilizing the images taken with the European VLBI Network, MERLIN, and Very Long Baseline Array. We discover that the jet maintains a parabolic streamline over a range in size scale equal to 105 times the Schwarzschild radius. The jet then transitions into a conical shape farther downstream. This suggests that the magnetohydrodynamic jet is initially subjected to the confinement by the external gas which is dominated by the gravitational influence of the supermassive black hole. Afterward the jet then freely expands with a conical shape. This geometrical transition indicates that the origin of the HST-1 complex may be a consequence of the overcollimation of the jet. Our result suggests that when even higher angular resolution is provided by a future submillimeter very long baseline interferometry experiments, we will be able to explore the origin of active galactic nucleus jets.

[1]  S. Komissarov,et al.  Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources , 2008, 0811.1467.

[2]  A. Tchekhovskoy,et al.  Simulations of ultrarelativistic magnetodynamic jets from gamma‐ray burst engines , 2008, 0803.3807.

[3]  R. Shcherbakov Spherically Symmetric Accretion Flows: Minimal Model with Magnetohydrodynamic Turbulence , 2008, 0803.3909.

[4]  Simulations of Superluminal Radio Sources , 1997 .

[5]  Cambridge,et al.  Bondi flow from a slowly rotating hot atmosphere , 2011, 1105.0594.

[6]  Eric W. Peng,et al.  The acs virgo cluster survey. X. half-light radii of globular clusters in early-type galaxies : Environmental dependencies and a standard ruler for distance estimation , 2005 .

[7]  M. Lister,et al.  The Inner Jet of the Radio Galaxy M87 , 2007, 0708.2695.

[8]  M. Reid,et al.  Subluminal Motion and Limb Brightening in the Nuclear Jet of M87 , 1989 .

[9]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[10]  R. Sanders THE RECONFINEMENT OF JETS , 1983 .

[11]  S. Allen,et al.  The relation between accretion rate and jet power in X-ray luminous elliptical galaxies , 2006, astro-ph/0602549.

[12]  M. Ostrowski,et al.  Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet , 2006 .

[13]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[14]  General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[15]  John A. Biretta,et al.  Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole , 1999, Nature.

[16]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[17]  J. A. Biretta,et al.  VARIABILITY TIMESCALES IN THE M87 JET: SIGNATURES OF E2 LOSSES, DISCOVERY OF A QUASI PERIOD IN HST-1, AND THE SITE OF TeV FLARING , 2009, 0904.3925.

[18]  Hongyan Zhou,et al.  Determination of the intrinsic velocity field in the M87 jet , 2009, 0904.1857.

[19]  William B. Sparks,et al.  The Jet of M87 at Tenth-Arcsecond Resolution: Optical, Ultraviolet, and Radio Observations , 1996 .

[20]  A. Levinson,et al.  RECOLLIMATION AND RADIATIVE FOCUSING OF RELATIVISTIC JETS: APPLICATIONS TO BLAZARS AND M87 , 2008, 0810.0562.

[21]  J. Biretta,et al.  Detection of Proper Motions in the M87 Jet , 1995 .

[22]  D. Meier,et al.  Magnetohydrodynamic production of relativistic jets. , 2001, Science.

[23]  Y. Lyubarsky ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS , 2009, 0902.3357.

[24]  T. Lauer,et al.  Planetary Camera observations of the M87 stellar cusp , 1992 .

[25]  William B. Sparks,et al.  Month-Timescale Optical Variability in the M87 Jet , 2003, astro-ph/0311161.

[26]  M. Ostrowski,et al.  On the Magnetic Field in the Kiloparsec-Scale Jet of Radio Galaxy M87 , 2005 .

[27]  D. E. Harris,et al.  Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission , 2007, 0705.2448.

[28]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[29]  Masanori Nakamura,et al.  A MAGNETOHYDRODYNAMIC MODEL OF THE M87 JET. I. SUPERLUMINAL KNOT EJECTIONS FROM HST-1 AS TRAILS OF QUAD RELATIVISTIC MHD SHOCKS , 2010, 1008.3512.

[30]  M. J. Wilson,et al.  A theoretical model of the M87 jet , 1985 .

[31]  D. E. Harris,et al.  APJ, ACCEPTED Preprint typeset using LATEX style emulateapj v. 6/22/04 THE OUTBURST OF HST-1 IN THE M87 JET , 2005 .

[32]  William B. Sparks,et al.  OPTICAL POLARIZATION AND SPECTRAL VARIABILITY IN THE M87 JET , 2011, 1109.6252.

[33]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[34]  Stanford,et al.  Hot Self-Similar Relativistic Magnetohydrodynamic Flows , 2008, 0801.1120.

[35]  Markus Boettcher,et al.  Time-dependent simulations of multiwavelength variability of the blazar Mrk 421 with a Monte Carlo multizone code , 2011, 1106.1865.

[36]  A. Marconi,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997 .

[37]  A. Wilson,et al.  Chandra Imaging of the X-Ray Core of the Virgo Cluster , 2002, astro-ph/0202504.

[38]  R. Sambruna,et al.  The evolution of radio-loud active galactic nuclei as a function of black hole spin , 2010, 1004.1166.

[39]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[40]  Juan P. Madrid,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF AN EXTRAORDINARY FLARE IN THE M87 JET , 2007, 0904.3546.

[41]  M. Sikora,et al.  A structure and energy dissipation efficiency of relativistic reconfinement shocks , 2008, 0810.3912.

[42]  William Junor,et al.  A VLBA movie of the jet launch region in M87 , 2008 .

[43]  D. A. Rafferty,et al.  The Feedback-regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies , 2006, astro-ph/0605323.

[44]  Frazer N. Owen,et al.  High-Resolution, High Dynamic Range VLA Images of the M87 Jet at 2 Centimeters , 1989 .