A note on cyclic codes over ℤ4 + uℤ4
暂无分享,去创建一个
[1] Alexis Bonnecaze,et al. Cyclic Codes and Self-Dual Codes Over , 1999 .
[2] Taher Abualrub,et al. On the generators of Z4 cyclic codes of length 2e , 2003, IEEE Trans. Inf. Theory.
[3] Maheshanand Bhaintwal,et al. On quasi-cyclic codes over $${\mathbb{Z}_q}$$ , 2009, Applicable Algebra in Engineering, Communication and Computing.
[4] Taher Abualrub,et al. Cyclic Codes of Length 2e over Z4 , 2001, Electron. Notes Discret. Math..
[5] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[6] Minjia Shi,et al. Some results on cyclic codes over F2 + UpsilonF2. , 2010 .
[8] Taher Abualrub,et al. Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2 , 2007, Des. Codes Cryptogr..
[9] H. Q. Dinh. Constacyclic Codes of Length BBF2+uBBF2 , 2009, IEEE Trans. Inf. Theory.
[10] Sergio R. López-Permouth,et al. Cyclic Codes over the Integers Modulopm , 1997 .
[11] Parampalli Udaya,et al. Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.
[12] YildizBahattin,et al. Linear codes over Z4+uZ4 , 2014 .
[13] B. R. McDonald. Finite Rings With Identity , 1974 .
[14] Suat Karadeniz,et al. Linear Codes over Z_4+uZ_4: MacWilliams identities, projections, and formally self-dual codes , 2014, Finite Fields Their Appl..
[15] Suat Karadeniz,et al. Cyclic codes over F2+uF2+vF2+uvF2 , 2011, Des. Codes Cryptogr..
[16] Thomas Blackford. Cyclic Codes Over Z4 of Oddly Even Length , 2003, Discret. Appl. Math..
[17] Vera Pless,et al. Cyclic codes and quadratic residue codes over Z4 , 1996, IEEE Trans. Inf. Theory.
[18] Thomas Blackford,et al. Cyclic Codes Over Z4 of Oddly Even Length , 2001, Discret. Appl. Math..
[19] Steven T. Dougherty,et al. Cyclic Codes Over$$\mathbb{Z}_{4}$$ of Even Length , 2006, Des. Codes Cryptogr..
[20] Bahattin Yildiz,et al. On cyclic codes over ℤ4 + uℤ4 and their ℤ4-images , 2014, Int. J. Inf. Coding Theory.
[21] Sergio R. López-Permouth,et al. Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.