Quasi-Biorthogonal Frame Multiresolution Analyses and Wavelets

We introduce the concepts of quasi-biorthogonal frame multiresolution analyses and quasi-biorthogonal frame wavelets which are natural generalizations of biorthogonal multiresolution analyses and biorthogonal wavelets, respectively. Necessary and sufficient conditions for quasi-biorthogonal frame multiresolution analyses to admit quasi-biorthogonal wavelet frames are given, and a non-trivial example of quasi-biorthogonal frame multiresolution analyses admitting quasi-biorthogonal frame wavelets is constructed. Finally, we characterize the pair of quasi-biorthogonal frame wavelets that is associated with quasi-biorthogonal frame multiresolution analyses.

[1]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[2]  Christopher Heil,et al.  Perturbation of Banach Frames and Atomic Decomposition , 1997 .

[3]  R. Jia Shift-invariant spaces and linear operator equations , 1998 .

[4]  Some applications of projection operators in wavelets , 1995 .

[5]  Marcin Bownik The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .

[6]  A. Aldroubi Oblique projections in atomic spaces , 1996 .

[7]  John J. Benedetto,et al.  Wavelet Frames: Multiresolution Analysis and Extension Principles , 2001 .

[8]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[9]  Jae Kun Lim,et al.  On Frame Wavelets Associated with Frame Multiresolution Analysis , 2001 .

[10]  Di-Rong Chen On the Splitting Trick and Wavelet Frame Packets , 2000, SIAM J. Math. Anal..

[11]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[12]  Gustaf Gripenberg,et al.  A necessary and sufficient condition for the existence of a father wavelet , 1995 .

[13]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[14]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[15]  Shidong Li,et al.  On general frame decompositions , 1995 .

[16]  Michael Unser,et al.  Construction of biorthogonal wavelets starting from any two multiresolutions , 1998, IEEE Trans. Signal Process..

[17]  P. Auscher Solution of two problems on wavelets , 1995 .

[18]  Jae Kun Lim,et al.  Characterizations of Biorthogonal Wavelets Which Are Associated with Biorthogonal Multiresolution Analyses , 2001 .

[19]  Frame Multiresolution Analysis , 2000 .

[20]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[21]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[22]  Peter G. Casazza,et al.  Frames of translates , 1998 .

[23]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[24]  G. Weiss,et al.  A First Course on Wavelets , 1996 .