Efficient tilings of de Bruijn and Kautz graphs

Kautz and de Bruijn graphs have a high degree of connectivity which makes them ideal candidates for massively parallel computer network topologies. In order to realize a practical computer architecture based on these graphs, it is useful to have a means of constructing a large-scale system from smaller, simpler modules. In this paper we consider the mathematical problem of uniformly tiling a de Bruijn or Kautz graph. This can be viewed as a generalization of the graph bisection problem. We focus on the problem of graph tilings by a set of identical subgraphs. Tiles should contain a maximal number of internal edges so as to minimize the number of edges connecting distinct tiles. We find necessary and sufficient conditions for the construction of tilings. We derive a simple lower bound on the number of edges which must leave each tile, and construct a class of tilings whose number of edges leaving each tile agrees asymptotically in form with the lower bound to within a constant factor. These tilings make possible the construction of large-scale computing systems based on de Bruijn and Kautz graph topologies.