Evaluating Light Availability, Seagrass Biomass, and Productivity Using Hyperspectral Airborne Remote Sensing in Saint Joseph’s Bay, Florida

Seagrasses provide a number of critical ecosystem services, including habitat for numerous species, sediment stabilization, and shoreline protection. Ariel photography is a useful tool to estimate the areal extent of seagrasses, but recent innovations in radiometrically calibrated sensors and algorithm development have allowed identification of benthic types and retrieval of absolute density. This study demonstrates the quantitative ability of a high spatial resolution (1 m) airborne hyperspectral sensor (3.2 nm bandwidth) in the complex coastal waters of Saint Joseph’s Bay (SJB). Several benthic types were distinguished, including submerged and floating aquatic vegetation, benthic red algae, bare sand, and optically deep water. A total of 23.6 km2 of benthic vegetation was detected, indicating no dramatic change in vegetation area over the past 30 years. SJB supported high seagrass density at depths shallower than 2 m with an average leaf area index of 2.0 ± 0.6 m2 m−2. Annual seagrass production in the bay was 13,570 t C year−1 and represented 41 % of total marine primary production. The effects of coarser spatial resolution were investigated and found to reduce biomass retrievals, underestimate productivity, and alter patch size statistics. Although data requirements for this approach are considerable, water column optical modeling may reduce the in situ requirements and facilitate the transition of this technique to routine monitoring efforts. The ability to quantify not just areal extent but also productivity of a seagrass meadow in optically complex coastal waters can provide information on the capacity of these environments to support marine food webs.

[1]  G. Vargo,et al.  Predicting the optical properties of the West Florida Shelf: resolving the potential impacts of a terrestrial boundary condition on the distribution of colored dissolved and particulate matter , 2005 .

[2]  Jun Zhao,et al.  Analysis of seagrass reflectivity by using a water column correction algorithm , 2010 .

[3]  I. Farah,et al.  Interpretation of hyperspectral imagery based on hybrid dimensionality reduction methods , 2014, International Image Processing, Applications and Systems Conference.

[4]  D. Jupp,et al.  Mapping coral reef benthic substrates using hyperspectral space-borne images and spectral libraries , 2006 .

[5]  R. Orth,et al.  Influence of a tube-dwelling polychaete on the dispersal of fragmented reproductive shoots of eelgrass , 2001 .

[6]  Bradley D. Robbins,et al.  Quantifying temporal change in seagrass areal coverage: the use of GIS and low resolution aerial photography , 1997 .

[7]  Frederick T. Short,et al.  Natural and human-induced disturbance of seagrasses , 1996, Environmental Conservation.

[8]  M. Mateo,et al.  Carbon flux in seagrass ecosystems , 2006 .

[9]  John M. Melack,et al.  Remote sensing of aquatic vegetation: theory and applications , 2008, Environmental monitoring and assessment.

[10]  Georg Martin,et al.  Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study , 2006 .

[11]  Robert A. Leathers,et al.  Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high‐resolution airborne imagery , 2003 .

[12]  P. Snelgrove,et al.  Increasing density of juvenile Atlantic (Gadus morhua) and Greenland cod (G. ogac) in association with spatial expansion and recovery of eelgrass (Zostera marina) in a coastal nursery habitat , 2010 .

[13]  R. Pu,et al.  Mapping and assessing seagrass along the western coast of Florida using Landsat TM and EO-1 ALI/Hyperion imagery , 2012 .

[14]  R. Orth,et al.  Broad-scale association between seagrass cover and juvenile blue crab density in Chesapeake Bay , 2013 .

[15]  H. Claustre,et al.  Comparison between spectrophotometric, fluorometric and HPLC methods for chlorophyll analysis , 1997 .

[16]  R. Steward,et al.  Hyperspectral Remote Sensing of the Coastal Environment , 2007 .

[17]  Nuria Marba and Carlos M. Duarte,et al.  Coupling of seagrass (Cymodocea nodosa) patch dynamics to subaqueous dune migratio , 1995 .

[18]  S. Bell,et al.  DYNAMICS OF A SUBTIDAL SEAGRASS LANDSCAPE: SEASONAL AND ANNUAL CHANGE IN RELATION TO WATER DEPTH , 2000 .

[19]  David Kohler,et al.  New approach for the radiometric calibration of spectral imaging systems. , 2004, Optics express.

[20]  B. Gillanders Seagrasses, Fish, and Fisheries , 2007 .

[21]  Heidi M. Dierssen,et al.  A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters , 2010 .

[22]  Robert A. Leathers,et al.  Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: A comparative spectral classification approach , 2003 .

[23]  Andrew D. Richardson,et al.  Spectral reflectance of the seagrasses: Thalassia testudinum, Halodule wrightii, Syringodium filiforme and five marine algae , 2007 .

[24]  Heidi M. Dierssen,et al.  Benthic ecology from space: optics and net primary production in seagrass and benthic algae across the Great Bahama Bank , 2010 .

[25]  Marcos J. Montes,et al.  Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique , 2004 .

[26]  Wojciech M. Klonowski,et al.  Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environments , 2011 .

[27]  Russell G. Congalton,et al.  Thematic and positional accuracy assessment of digital remotely sensed data , 2007 .

[28]  J. K. McNulty,et al.  Cooperative Gulf of Mexico Estuarine Inventory and Study, Florida: Phase I, Area Description , 2018 .

[29]  Motoaki Kishino,et al.  Estimation of the spectral absorption coefficients of phytoplankton in the sea , 1985 .

[30]  C. Carlson,et al.  Production of chromophoric dissolved organic matter by Sargasso Sea microbes , 2004 .

[31]  T. O. Crist,et al.  Critical Thresholds in Species' Responses to Landscape Structure , 1995 .

[32]  Carlos M. Duarte,et al.  Seagrass Biomass And Production: A Reassessment , 1999 .

[33]  A. Sfriso,et al.  Seasonal variation in biomass, morphometric parameters and production of seagrasses in the lagoon of Venice , 1998 .

[34]  Maria T. Chiaradia,et al.  Applications of Remote Sensing Techniques for Mapping Posidonia Oceanica Meadows , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[35]  P. Mumby,et al.  Measurement of seagrass standing crop using satellite and digital airborne remote sensing , 1997 .

[36]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[37]  Trijntje Valerie Downes,et al.  Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. , 2005, Applied optics.

[38]  Richard W. Gould,et al.  From Meters to Kilometers: A Look at Ocean-Color Scales of Variability, Spatial Coherence, and the Need for Fine-Scale Remote Sensing in Coastal Ocean Optics , 2004 .

[39]  Larry J. Hindman,et al.  Distribution of Submerged Aquatic Vegetation in the Chesapeake Bay and Tributaries - 1984 , 1985 .

[40]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. , 1999, Applied optics.

[41]  Susan S. Bell,et al.  Seagrass Ecology: New Contributions from a Landscape Perspective , 2007 .

[42]  Luciano Alparone,et al.  Pan-sharpening of multispectral images: a critical review and comparison , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[43]  B. I. Tussenbroek ABOVE- AND BELOW-GROUND BIOMASS AND PRODUCTION BY THALASSIA TESTUDINUM IN A TROPICAL REEF LAGOON , 1998 .

[44]  M. P. Lesser,et al.  Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery , 2007, Coral Reefs.

[45]  Chris Roelfsema,et al.  A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data , 2009 .

[46]  N. Marbà,et al.  Seagrass Beds and Coastal Biogeochemistry , 2007 .

[47]  Robert F. Chen,et al.  Properties of the Water Column and Bottom Derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Data , 2001 .

[48]  D. Moriarty,et al.  Exudation of organic carbon by the seagrass Halodule wrightii Aschers. and its effect on bacterial growth in the sediment , 1986 .

[49]  Frederick T. Short,et al.  Accelerating loss of seagrasses across the globe threatens coastal ecosystems , 2009, Proceedings of the National Academy of Sciences.

[50]  C. Davis,et al.  Model for the interpretation of hyperspectral remote-sensing reflectance. , 1994, Applied optics.

[51]  S. Fyfe,et al.  Spatial and temporal variation in spectral reflectance: Are seagrass species spectrally distinct? , 2003 .

[52]  Donald C. Rundquist,et al.  The spectral responses of Ceratophyllum demersum at varying depths in an experimental tank , 2003 .

[53]  Teruhisa Komatsu,et al.  Using bottom surface reflectance to map coastal marine areas: a new application method for Lyzenga's model , 2010 .

[54]  Wei Chen,et al.  Ocean PHILLS hyperspectral imager: design, characterization, and calibration. , 2002, Optics express.

[55]  Mati Kahru,et al.  Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 4; Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols; Revised , 2003 .

[56]  G. Kendrick,et al.  Changes in seagrass cover on Success and Parmelia Banks, Western Australia between 1965 and 1995 , 2000 .

[57]  Richard C. Zimmerman,et al.  A biooptical model of irradiance distribution and photosynthesis in seagrass canopies , 2003 .

[58]  A. Lombana,et al.  A review of issues in seagrass seed dormancy and germination : implications for conservation and restoration , 2000 .

[59]  Chris Roelfsema,et al.  Mapping seagrass species, cover and biomass in shallow waters : An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia) , 2008 .

[60]  Robert J. Orth,et al.  Seagrasses: biology, ecology and conservation , 2006 .

[61]  B. Osborne,et al.  Light and Photosynthesis in Aquatic Ecosystems. , 1985 .

[62]  Vanina Pasqualini,et al.  Use of SPOT 5 for mapping seagrasses: An application to Posidonia oceanica , 2005 .

[63]  S. Bell,et al.  Gap Dynamics in a Seagrass Landscape , 1999, Ecosystems.

[64]  Clement Atzberger,et al.  Satellite-based monitoring of tropical seagrass vegetation: current techniques and future developments , 2007, Hydrobiologia.

[65]  R. J. Williams,et al.  Detecting trends in seagrass abundance using aerial photograph interpretation: Problems arising with the evolution of mapping methods , 2005 .

[66]  M.R.Vimala Devi,et al.  An efficient PAN sharpening technique by merging two hybrid approaches , 2012 .

[67]  Wojciech M. Klonowski,et al.  Retrieving key benthic cover types and bathymetry from hyperspectral imagery , 2007 .

[68]  Z. Ahmad,et al.  Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. , 2000, Applied optics.

[69]  Peter J. Mumby,et al.  Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy , 2002 .

[70]  André Morel,et al.  Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo , 1994 .

[71]  J. P. Kurdziel,et al.  Emergence and dispersal of phytal-dwelling meiobenthic copepods , 1992 .

[72]  James W. Fourqurean,et al.  Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay , 1989 .

[73]  Heidi M. Dierssen,et al.  The Optical Properties of Greater Florida Bay: Implications for Seagrass Abundance , 2011 .

[74]  Vittorio E. Brando,et al.  Remote Sensing of Seagrass Ecosystems: Use of Spaceborne and Airborne Sensors , 2007 .

[75]  James W. Fourqurean,et al.  Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay , 1999 .

[76]  R. Iverson,et al.  Estimating vegetation coverage in St. Joseph Bay, Florida with an airborne multispectral scanner , 1984 .

[77]  R. Lipcius,et al.  HABITAT FRAGMENTATION IN A SEAGRASS LANDSCAPE: PATCH SIZE AND COMPLEXITY CONTROL BLUE CRAB SURVIVAL , 2001 .

[78]  Lisa R. Moore,et al.  Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples , 2000 .

[79]  D. Gorsline,et al.  Recent Sedimentary History of ST. Joseph Bay, FLORIDA1 , 1962 .