Finite element approximation of optimal control problems governed by time fractional diffusion equation

In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on 'first discretize, then optimize' approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings.

[1]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[2]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[3]  Chuanju Xu,et al.  Spectral Optimization Methods for the Time Fractional Diffusion Inverse Problem , 2013 .

[4]  Gaston M. N'Guérékata,et al.  Optimal control of a fractional diffusion equation with state constraints , 2011, Comput. Math. Appl..

[5]  I. Turner,et al.  Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation , 2005 .

[6]  Fawang Liu,et al.  Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..

[7]  G. Mophou,et al.  Optimal Control of a Fractional Diffusion Equation with Delay , 2014 .

[8]  Zaid M. Odibat,et al.  Generalized Taylor's formula , 2007, Appl. Math. Comput..

[9]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[10]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[12]  Gisèle M. Mophou,et al.  Optimal control of fractional diffusion equation , 2011, Comput. Math. Appl..

[13]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[14]  Maggs,et al.  Subdiffusion and Anomalous Local Viscoelasticity in Actin Networks. , 1996, Physical review letters.

[15]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[16]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[17]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[18]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[19]  Karl Kunisch,et al.  Constrained Dirichlet Boundary Control in L2 for a Class of Evolution Equations , 2007, SIAM J. Control. Optim..

[20]  R. Feynman,et al.  RECENT APPLICATIONS OF FRACTIONAL CALCULUS TO SCIENCE AND ENGINEERING , 2003 .

[21]  W. McLean Regularity of solutions to a time-fractional diffusion equation , 2010 .

[22]  I. Podlubny Fractional differential equations , 1998 .

[23]  Ronald H. W. Hoppe,et al.  Numerical Solution of Some Types of Fractional Optimal Control Problems , 2013, TheScientificWorldJournal.

[24]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[25]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[26]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[27]  J. Pasciak,et al.  Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.