Problems and results on combinatorial number theory III

Publisher Summary This chapter discusses the problems and results on combinatorial number theory. It discusses number theoretic problems that are of combinatorial nature. Number theory is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers along with the properties of objects made out of integers. Integers can be considered either in themselves or as solutions to equations. Questions in number theory are often understood through the study of analytical objects that encode properties of the integers, primes or other number-theoretic objects in some fashion. Real numbers can also be studied in relation to rational numbers.

[1]  R. Rado,et al.  Studien zur Kombinatorik , 1933 .

[2]  H. L. Dorwart Irreducibility of Polynomials , 1935 .

[3]  Paul Erdös,et al.  On Some Sequences of Integers , 1936 .

[4]  P. Erdös,et al.  On a problem of sidon in additive number theory, and on some related problems , 1941 .

[5]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[6]  K. F. Roth On Certain Sets of Integers , 1953 .

[7]  G. Lorentz On a problem of additive number theory , 1954 .

[8]  Paul Erdős Some results on additive number theory , 1954 .

[9]  A. Stöhr,et al.  Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. II. , 1955 .

[10]  Paul Erdös,et al.  On a Problem of Additive Number Theory , 1956 .

[11]  P. Erdös,et al.  Intersection Theorems for Systems of Sets , 1960 .

[12]  Paul Erdös,et al.  Additive properties of random sequences of positive integers , 1960 .

[13]  Remarks on a conjecture of Hanani in additive number theory , 1960 .

[14]  Über einige Probleme der additiven Zahlentheorie. , 1961 .

[15]  E. Wirsing,et al.  Das asymptotische Verhalten von Summen über multiplikative Funktionen , 1961 .

[16]  R. A. Rankin,et al.  XXIV.—Sets of Integers Containing not more than a Given Number of Terms in Arithmetical Progression , 1961, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[17]  Sätze und Probleme überpk/k , 1962 .

[18]  Paul Erdős On a Problem in Elementary Number Theory and a Combinatorial Problem , 1964 .

[19]  K. F. Roth Remark concerning integer sequences , 1964 .

[20]  Paul Erdös,et al.  On the multiplicative representation of integers , 1964 .

[21]  P. Erdös Some remarks on number theory. II. , 1965 .

[22]  A. Rényi,et al.  Probabilistic methods in group theory , 1965 .

[23]  András Sárközy,et al.  Über ein Problem von Erdös und Moser , 1965 .

[24]  H. L. Abbott Some Remarks on a Combinatorial Theorem of Erdös and Rado , 1966, Canadian Mathematical Bulletin.

[25]  R. Miech On a conjecture of Erdös and Rényi , 1967 .

[26]  van Lint Representation of 0 as ∑^{}_{=-}_{} , 1967 .

[27]  K. F. Roth Irregularities of sequences relative to arithmetic progressions , 1967 .

[28]  Henry B. Mann Two addition theorems , 1967 .

[29]  E. Wirsing,et al.  Das asymptotische Verhalten von Summen über multiplikative Funktionen. II , 1967 .

[30]  G. Halász,et al.  Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen , 1968 .

[31]  On a problem of P. Erdos and S. Stein , 1968 .

[32]  E.R. Berlekamp A Construction for Partitions Which Avoid Long Arithmetic Progressions , 1968, Canadian Mathematical Bulletin.

[33]  E. Szemerédi On sets of integers containing no four elements in arithmetic progression , 1969 .

[34]  J. Marica,et al.  Differences of Sets and A Problem of Graham , 1969, Canadian Mathematical Bulletin.

[35]  Paul Erdös,et al.  Some applications of graph theory to number theory , 1969 .

[36]  S. Znám,et al.  On exactly covering systems of arithmetic sequences , 1969 .

[37]  K. F Roth Irregularities of sequences relative to arithmetic progressions, III , 1970 .

[38]  Paul Erdös,et al.  Distinct distances between lattice points , 1970 .

[39]  Endre Szemerédi,et al.  On a conjecture of Erdös and Heilbronn , 1970 .

[40]  On a conjecture concerning exactly covering systems of congruences , 1970 .

[41]  An Extremal Problem in Number Theory , 1970 .

[42]  S. Choi Covering the Set of Integers by Congruence Classes of Distinct Moduli , 1971 .

[43]  Christine Treash The completion of finite incomplete Steiner triple systems with applications to loop theory , 1971 .

[44]  Some Problems On Consecutive Prime Numbers , 1972 .

[45]  On Weird and Pseudoperfect Numbers , 1974 .

[46]  Ian Richards,et al.  Primes in intervals , 1974 .

[47]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[48]  J. Selfridge,et al.  Not every number is the sum or difference of two prime powers , 1975 .