From high oscillation to rapid approximation V: the equilateral triangle

We address in this paper the approximation of functions in an equilateral triangle by a linear combination of Laplace–Neumann eigenfunctions. The Laplace–Neumann basis exhibits a number of advantages. The approximations converge fairly fast and their speed of convergence can be much improved by using techniques familiar in Fourier analysis and spectral methods, in particular, the hyperbolic cross and polynomial subtraction. Moreover, expansion coefficients can be computed rapidly by a mixture of asymptotic methods and Birkhoff–Hermite quadratures.

[1]  Arieh Iserles,et al.  From high oscillation to rapid approximation III: multivariate expansions , 2009 .

[2]  Daan Huybrechs,et al.  From high oscillation to rapid approximation IV: accelerating convergence , 2011 .

[3]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[4]  Daan Huybrechs,et al.  Highly Oscillatory Problems: Highly oscillatory quadrature , 2009 .

[5]  James N. Lyness,et al.  Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .

[6]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[7]  Arieh Iserles,et al.  From high oscillation to rapid approximation I: Modified Fourier expansions , 2008 .

[8]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[9]  R. Wilson On the evaluation of , 1940 .

[10]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Sheehan Olver,et al.  Moment-free numerical integration of highly oscillatory functions , 2006 .

[12]  G. Nikolov Existence and uniqueness of Hermite-Birkhoff Gaussian quadrature formulas , 1989 .

[13]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[14]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[15]  Arieh Iserles,et al.  From high oscillation to rapid approximation II: Expansions in polyharmonic eigenfunctions , 2006 .

[16]  Sheehan Olver,et al.  On the convergence rate of a modified Fourier series , 2009, Math. Comput..

[17]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[18]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[19]  Milan Práger Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle , 1998 .

[20]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .