From high oscillation to rapid approximation V: the equilateral triangle
暂无分享,去创建一个
[1] Arieh Iserles,et al. From high oscillation to rapid approximation III: multivariate expansions , 2009 .
[2] Daan Huybrechs,et al. From high oscillation to rapid approximation IV: accelerating convergence , 2011 .
[3] Ronald Cools,et al. A survey of numerical cubature over triangles , 1993 .
[4] Daan Huybrechs,et al. Highly Oscillatory Problems: Highly oscillatory quadrature , 2009 .
[5] James N. Lyness,et al. Moderate degree symmetric quadrature rules for the triangle j inst maths , 1975 .
[6] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[7] Arieh Iserles,et al. From high oscillation to rapid approximation I: Modified Fourier expansions , 2008 .
[8] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[9] R. Wilson. On the evaluation of , 1940 .
[10] A. Iserles,et al. Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[11] Sheehan Olver,et al. Moment-free numerical integration of highly oscillatory functions , 2006 .
[12] G. Nikolov. Existence and uniqueness of Hermite-Birkhoff Gaussian quadrature formulas , 1989 .
[13] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[14] Daan Huybrechs,et al. On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..
[15] Arieh Iserles,et al. From high oscillation to rapid approximation II: Expansions in polyharmonic eigenfunctions , 2006 .
[16] Sheehan Olver,et al. On the convergence rate of a modified Fourier series , 2009, Math. Comput..
[17] Ronald Cools,et al. Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.
[18] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[19] Milan Práger. Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle , 1998 .
[20] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .