The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating

[1]  M. White,et al.  The effect of microstructure on thermal expansion coefficients in powder-processed Al2Mo3O12 , 2013, Journal of Materials Science.

[2]  M. Søndergaard,et al.  Thermal stability and thermoelectric properties of Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4 , 2013, Journal of Materials Science.

[3]  N. Frage,et al.  Microstructure and mechanical properties of silicon carbide processed by Spark Plasma Sintering (SPS) , 2012 .

[4]  M. Kanatzidis,et al.  Bloating in (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055%PbI2 Thermoelectric Specimens as a Result of Processing Conditions , 2012, Journal of Electronic Materials.

[5]  E. A. Payzant,et al.  The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials , 2012 .

[6]  E. Lara‐Curzio,et al.  Temperature-dependent Young's modulus, shear modulus and Poisson's ratio of p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials , 2012 .

[7]  H. Goldsmid Application of the Transverse Thermoelectric Effects , 2011 .

[8]  N. Adachi,et al.  Preparation and thermomechanical characterisation of aluminum titanate flexible ceramics , 2011 .

[9]  J. Malzbender,et al.  Thermo-mechanical properties of La2NiO4+δ , 2011 .

[10]  D. Dunand,et al.  Solid-state foaming of Ti-6Al-4V by creep or superplastic expansion of argon-filled pores , 2010 .

[11]  T. Chotard,et al.  Young’s modulus evolution at high temperature of SiC refractory castables , 2010 .

[12]  N. Frage,et al.  Microstructural characterization of spark plasma sintered boron carbide ceramics , 2010 .

[13]  M. B. Maple,et al.  Thermal expansion of skutterudites , 2010 .

[14]  J. Zekonyte,et al.  The influence of high-temperature sintering on microstructure and mechanical properties of free-standing APS CeO2–Y2O3–ZrO2 coatings , 2010 .

[15]  F. Ren,et al.  Porosity dependence of elastic moduli in LAST (Lead–antimony–silver–tellurium) thermoelectric materials , 2009 .

[16]  Marc Huger,et al.  Influence of the thermal history on the mechanical properties of two alumina based castables , 2009 .

[17]  C. Uher,et al.  Transport and mechanical properties of Yb-filled skutterudites , 2009 .

[18]  R. Meisner,et al.  Temperature-dependent thermal expansion of cast and hot-pressed LAST (Pb–Sb–Ag–Te) thermoelectric materials , 2009 .

[19]  F. Ren,et al.  Agglomeration during wet milling of LAST (lead–antimony–silver–tellurium) powders , 2009 .

[20]  M. Kanatzidis,et al.  Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials , 2009 .

[21]  M. Kanatzidis,et al.  The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy , 2008 .

[22]  H. Inui,et al.  Mechanical and thermal properties of single crystals of the type-I clathrate compounds Ba8Ga16Ge30 and Sr8Ga16Ge30 , 2008 .

[23]  H. Schock,et al.  Hardness as a function of composition for n-type LAST thermoelectric material , 2008 .

[24]  T. Chotard,et al.  Thermo-elastic behaviour of a natural quartzite: itacolumite , 2008, Journal of Materials Science.

[25]  H. Schock,et al.  Young's modulus as a function of composition for an n-type lead–antimony–silver–telluride (LAST) thermoelectric material , 2007 .

[26]  F. Ren,et al.  Characterization of dry milled powders of LAST (lead–antimony–silver–tellurium) thermoelectric material , 2007 .

[27]  Ctirad Uher,et al.  Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. , 2007, Journal of the American Chemical Society.

[28]  B. B. Panigrahi,et al.  Thermal expansion behaviour of nanocrystalline titanium powder compacts , 2005 .

[29]  P. Nanni,et al.  Microstructure and thermal expansion of Al2TiO5-MgTi2O5 solid solutions obtained by reaction sintering , 2002 .

[30]  J. Groza,et al.  Surface effects in field-assisted sintering , 2001 .

[31]  Roy W. Rice,et al.  Mechanical Properties of Ceramics and Composites: Grain And Particle Effects , 2000 .

[32]  Nicolas Lequeux,et al.  Elastic properties of high alumina cement castables from room temperature to 1600°C , 1999 .

[33]  Roy W. Rice,et al.  Porosity of Ceramics: Properties and Applications , 1998 .

[34]  U. Erb,et al.  Thermal expansion and heat capacity of porosity-free nanocrystalline materials , 1995 .

[35]  T. Hirai,et al.  Thermal Expansion and Athermal Phase Transition of Y4AI2O9 Ceramics , 1995 .

[36]  S. Risbud,et al.  Clean grain boundaries in aluminium nitride ceramics densified without additives by a plasma-activated sintering process , 1994 .

[37]  D. Hasselman,et al.  Effect of Thermal History on the Thermal Diffusivity and Thermal Expansion of an Alumina–Aluminum Titanate Composite , 1993 .

[38]  K. Yamazaki,et al.  Plasma activated sintering of additive-free AlN powders to near-theoretical density in 5 minutes , 1992 .

[39]  E. Case,et al.  Mechanical effects of thermal cycling on US and Australian Synroc B , 1985 .

[40]  R. Bradt,et al.  Influence of Grain Size on Effects of Thermal Expansion Anisotropy in MgTi2O5 , 1973 .

[41]  H. Belson,et al.  Elastic Constants, Thermal Expansion, and Debye Temperature of Lead Telluride , 1968 .

[42]  F. A. Hummel,et al.  High‐Temperature Mechanical Properties of Ceramic Materials: II, Beta‐Eucryptite , 1959 .

[43]  F. A. Hummel,et al.  High‐Temperature Mechanical Properties of Ceramic Materials: I, Magnesium Dititanate , 1958 .

[44]  W. Kingery,et al.  THERMAL CONDUCTIVITY. XIII. EFFECT OF MICROSTRUCTURE ON CONDUCTIVITY OF SINGLE-PHASE CERAMICS , 1957 .

[45]  C. Gault,et al.  Microstructural changes and evolutions of elastic properties versus temperature of alumina and alumina–magnesia refractory castables , 2008 .

[46]  Marc Huger,et al.  High temperature characterisation of cordierite-mullite refractory by ultrasonic means , 2008 .

[47]  C. Gault,et al.  Evolution of elastic properties and microstructural changes versus temperature in bonding phases of alumina and alumina–magnesia refractory castables , 2007 .

[48]  A. Evans,et al.  Fracture Mechanics of Ceramics , 1986 .

[49]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .