An asymptotic expansion for the multivariate normal distribution and Mills' ratio
暂无分享,去创建一个
[1] I. R. Savage. Mill's ratio for multivariate normal distributions , 1962 .
[2] C. W. Dunnett,et al. The Numerical Evaluation of Certain Multivariate Normal Integrals , 1962 .
[3] H. Ruben. An asymptotic expansion for a class of multivariate normal integrals , 1962, Journal of the Australian Mathematical Society.
[4] H. Ruben,et al. Probability Content of Regions Under Spherical Normal Distributions, III: The Bivariate Normal Integral , 1961 .
[5] H. Ruben. On the geometrical moments of skew-regular simplices in hyperspherical space, with some applications in geometry and mathematical statistics , 1960 .
[6] A. Stuart. Equally Correlated Variates and the Multinormal Integral , 1958 .
[7] S. Das. The numerical evaluation of a class of integrals. II , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] P. Moran. The numerical evaluation of a class of integrals , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.
[9] C. Dunnett,et al. Approximations to the probability integral and certain percentage points of a multivariate analogue of Student's t-distribution* , 1955 .
[10] H. Ruben. ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS , 1954 .
[11] G. Uhlenbeck,et al. On the Theory of the Brownian Motion II , 1945 .
[12] G. P. Steck,et al. A note on the equicorrelated multivariate normal distribution , 1962 .
[13] H. Ruben. A MULTIDIMENSIONAL GENERALIZATION OF THE INVERSE SINE FUNCTION , 1961 .
[14] H. Ruben. A Power Series Expansion for a Class of Schläfli Functions , 1961 .
[15] H. Ruben. XX.—On the Numerical Evaluation of a Class of Multivariate Normal Integrals , 1960, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.
[16] P. Mazur. On the theory of brownian motion , 1959 .