An asymptotic expansion for the multivariate normal distribution and Mills' ratio

An asymptotic expansion for the multivariate normal integral over an infinitely ex tended rectangle, and therefore also for the associated multivariate Mills ' ratio , is developed. The expansion is valid provided the vertex of the rectangle lies in a polyhedral half·cone determined by the set of regress ion planes. The expansion obtained here is a natural generalization of the c lass ic ex pansion for the normal univariate integr al, and the coeffi cients in it involve the mome nts of the conjugate multinormal di stribution.

[1]  I. R. Savage Mill's ratio for multivariate normal distributions , 1962 .

[2]  C. W. Dunnett,et al.  The Numerical Evaluation of Certain Multivariate Normal Integrals , 1962 .

[3]  H. Ruben An asymptotic expansion for a class of multivariate normal integrals , 1962, Journal of the Australian Mathematical Society.

[4]  H. Ruben,et al.  Probability Content of Regions Under Spherical Normal Distributions, III: The Bivariate Normal Integral , 1961 .

[5]  H. Ruben On the geometrical moments of skew-regular simplices in hyperspherical space, with some applications in geometry and mathematical statistics , 1960 .

[6]  A. Stuart Equally Correlated Variates and the Multinormal Integral , 1958 .

[7]  S. Das The numerical evaluation of a class of integrals. II , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  P. Moran The numerical evaluation of a class of integrals , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  C. Dunnett,et al.  Approximations to the probability integral and certain percentage points of a multivariate analogue of Student's t-distribution* , 1955 .

[10]  H. Ruben ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS , 1954 .

[11]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion II , 1945 .

[12]  G. P. Steck,et al.  A note on the equicorrelated multivariate normal distribution , 1962 .

[13]  H. Ruben A MULTIDIMENSIONAL GENERALIZATION OF THE INVERSE SINE FUNCTION , 1961 .

[14]  H. Ruben A Power Series Expansion for a Class of Schläfli Functions , 1961 .

[15]  H. Ruben XX.—On the Numerical Evaluation of a Class of Multivariate Normal Integrals , 1960, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[16]  P. Mazur On the theory of brownian motion , 1959 .