Computing crossing numbers in quadratic time

We show that for every fixed k ≥ 0 there is a quadratic time algorithm that decides whether a given graph has crossing number at most k and, if this is the case, computes a drawing of the graph into the plane with at most k crossings.

[1]  Gary L. Miller,et al.  On determining the genus of a graph in O(v O(g)) steps(Preliminary Report) , 1979, STOC.

[2]  David S. Johnson The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.

[3]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[4]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[5]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[6]  Bojan Mohar,et al.  Embedding graphs in an arbitrary surface in linear time , 1996, STOC '96.

[7]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[8]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[9]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[10]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XII: planar graphs and planar maps , 2000, Theor. Comput. Sci..

[11]  David S. Johnson,et al.  The NP-completeness column , 2005, TALG.

[12]  Jörg Flum,et al.  Query evaluation via tree-decompositions , 2001, JACM.

[13]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[14]  Bruce A. Reed,et al.  An Improved Algorithm for Finding Tree Decompositions of Small Width , 1999, Int. J. Found. Comput. Sci..

[15]  Carsten Thomassen A Simpler Proof of the Excluded Minor Theorem for Higher Surfaces , 1997, J. Comb. Theory, Ser. B.

[16]  Stavros S. Cosmadakis,et al.  Logical reducibility and monadic NP , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[17]  Carsten Thomassen,et al.  The Graph Genus Problem is NP-Complete , 1989, J. Algorithms.

[18]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.