Stability of Low-Rank Tensor Representations and Structured Multilevel Preconditioning for Elliptic PDEs

Folding grid value vectors of size $$2^L$$ 2 L into L th-order tensors of mode size $$2\times \cdots \times 2$$ 2 × ⋯ × 2 , combined with low-rank representation in the tensor train format, has been shown to result in highly efficient approximations for various classes of functions. These include solutions of elliptic PDEs on nonsmooth domains or with oscillatory data. This tensor-structured approach is attractive because it leads to highly compressed, adaptive approximations based on simple discretizations. Standard choices of the underlying bases, such as piecewise multilinear finite elements on uniform tensor product grids, entail the well-known matrix ill-conditioning of discrete operators. We demonstrate that, for low-rank representations, the use of tensor structure itself additionally introduces representation ill-conditioning , a new effect specific to computations in tensor networks. We analyze the tensor structure of a BPX preconditioner for a second-order linear elliptic operator and construct an explicit tensor-structured representation of the preconditioner, with ranks independent of the number L of discretization levels. The straightforward application of the preconditioner yields discrete operators whose matrix conditioning is uniform with respect to the discretization parameter, but in decompositions that suffer from representation ill-conditioning. By additionally eliminating certain redundancies in the representations of the preconditioned discrete operators, we obtain reduced-rank decompositions that are free of both matrix and representation ill-conditioning. For an iterative solver based on soft thresholding of low-rank tensors, we obtain convergence and complexity estimates and demonstrate its reliability and efficiency for discretizations with up to $$2^{50}$$ 2 50 nodes in each dimension.

[1]  Ivan Oseledets,et al.  Tensor Structured Iterative Solution of Elliptic Problems with Jumping Coefficients , 2010 .

[2]  Harry Yserentant,et al.  A basic norm equivalence for the theory of multilevel methods , 1993 .

[3]  I. Oseledets,et al.  Robust discretization in quantized tensor train format for elliptic problems in two dimensions , 2016, 1612.01166.

[4]  Vladimir A. Kazeev,et al.  Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains , 2014, PLoS Comput. Biol..

[5]  Markus Bachmayr,et al.  Iterative Methods Based on Soft Thresholding of Hierarchical Tensors , 2017, Found. Comput. Math..

[6]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[7]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[8]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[9]  Ivan V. Oseledets,et al.  Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[10]  Reinhold Schneider,et al.  Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.

[11]  Ivan Oseledets,et al.  QTT approximation of elliptic solution operators in higher dimensions , 2011 .

[12]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[13]  Reinhold Schneider,et al.  Multilevel frames for sparse tensor product spaces , 2008, Numerische Mathematik.

[14]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[15]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[16]  Bart Vandereycken,et al.  The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.

[17]  Wolfgang Hackbusch,et al.  Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.

[18]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[19]  Wolfgang Dahmen,et al.  Adaptive Low-Rank Methods: Problems on Sobolev Spaces , 2014, SIAM J. Numer. Anal..

[20]  Boris N. Khoromskij,et al.  Tensor Numerical Methods in Scientific Computing , 2018 .

[21]  I. Oseledets,et al.  BLACK-BOX SOLVER FOR ONE-DIMENSIONAL MULTISCALE MODELLING USING THE QTT FORMAT , 2016, Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016).

[22]  Wolfgang Hackbusch Solution of linear systems in high spatial dimensions , 2015, Comput. Vis. Sci..

[23]  Christoph Schwab,et al.  Approximation of Singularities by Quantized-Tensor FEM ∗ , 2015 .

[24]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[25]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[26]  Vladimir A. Kazeev,et al.  Direct tensor-product solution of one-dimensional elliptic equations with parameter-dependent coefficients , 2018, Math. Comput. Simul..

[27]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[28]  Wolfgang Dahmen,et al.  Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.

[29]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[30]  VLADIMIR A. KAZEEV,et al.  Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..

[31]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[32]  Jennifer Seberry,et al.  The Strong Kronecker Product , 1994, J. Comb. Theory, Ser. A.

[33]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .

[34]  Boris N. Khoromskij,et al.  Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation , 2014, Comput. Phys. Commun..

[35]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[36]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[37]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[38]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[39]  I. Babuska,et al.  The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .

[40]  H. Yserentant Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .

[41]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[42]  Vladimir A. Kazeev,et al.  Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..

[43]  V. Kazeev Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions , 2018 .

[44]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[45]  Vladimir A. Kazeev,et al.  QTT-finite-element approximation for multiscale problems I: model problems in one dimension , 2017, Adv. Comput. Math..

[46]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[47]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[48]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .

[49]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets II: Implementation and Numerical Results , 1998, SIAM J. Sci. Comput..

[50]  Christoph Schwab,et al.  Low-rank tensor structure of linear diffusion operators in the TT and QTT formats☆ , 2013 .

[51]  Harry Yserentant,et al.  Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .

[52]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[53]  Daniel Kressner,et al.  Algorithm 941 , 2014 .

[54]  Ivan Oseledets,et al.  Approximation of matrices with logarithmic number of parameters , 2009 .

[55]  Christine Tobler,et al.  Multilevel preconditioning and low‐rank tensor iteration for space–time simultaneous discretizations of parabolic PDEs , 2015, Numer. Linear Algebra Appl..