Stability of Low-Rank Tensor Representations and Structured Multilevel Preconditioning for Elliptic PDEs
暂无分享,去创建一个
[1] Ivan Oseledets,et al. Tensor Structured Iterative Solution of Elliptic Problems with Jumping Coefficients , 2010 .
[2] Harry Yserentant,et al. A basic norm equivalence for the theory of multilevel methods , 1993 .
[3] I. Oseledets,et al. Robust discretization in quantized tensor train format for elliptic problems in two dimensions , 2016, 1612.01166.
[4] Vladimir A. Kazeev,et al. Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains , 2014, PLoS Comput. Biol..
[5] Markus Bachmayr,et al. Iterative Methods Based on Soft Thresholding of Hierarchical Tensors , 2017, Found. Comput. Math..
[6] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[7] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[8] B. Khoromskij. O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .
[9] Ivan V. Oseledets,et al. Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..
[10] Reinhold Schneider,et al. Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.
[11] Ivan Oseledets,et al. QTT approximation of elliptic solution operators in higher dimensions , 2011 .
[12] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[13] Reinhold Schneider,et al. Multilevel frames for sparse tensor product spaces , 2008, Numerische Mathematik.
[14] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[15] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[16] Bart Vandereycken,et al. The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.
[17] Wolfgang Hackbusch,et al. Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.
[18] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[19] Wolfgang Dahmen,et al. Adaptive Low-Rank Methods: Problems on Sobolev Spaces , 2014, SIAM J. Numer. Anal..
[20] Boris N. Khoromskij,et al. Tensor Numerical Methods in Scientific Computing , 2018 .
[21] I. Oseledets,et al. BLACK-BOX SOLVER FOR ONE-DIMENSIONAL MULTISCALE MODELLING USING THE QTT FORMAT , 2016, Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016).
[22] Wolfgang Hackbusch. Solution of linear systems in high spatial dimensions , 2015, Comput. Vis. Sci..
[23] Christoph Schwab,et al. Approximation of Singularities by Quantized-Tensor FEM ∗ , 2015 .
[24] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[25] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[26] Vladimir A. Kazeev,et al. Direct tensor-product solution of one-dimensional elliptic equations with parameter-dependent coefficients , 2018, Math. Comput. Simul..
[27] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[28] Wolfgang Dahmen,et al. Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.
[29] Xuejun Zhang,et al. Multilevel Schwarz methods , 1992 .
[30] VLADIMIR A. KAZEEV,et al. Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..
[31] Harry Yserentant,et al. On the multi-level splitting of finite element spaces , 1986 .
[32] Jennifer Seberry,et al. The Strong Kronecker Product , 1994, J. Comb. Theory, Ser. A.
[33] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .
[34] Boris N. Khoromskij,et al. Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation , 2014, Comput. Phys. Commun..
[35] Lars Grasedyck,et al. F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .
[36] Roman Orus,et al. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.
[37] S. V. Dolgov,et al. ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .
[38] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[39] I. Babuska,et al. The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .
[40] H. Yserentant. Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .
[41] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[42] Vladimir A. Kazeev,et al. Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..
[43] V. Kazeev. Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions , 2018 .
[44] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[45] Vladimir A. Kazeev,et al. QTT-finite-element approximation for multiscale problems I: model problems in one dimension , 2017, Adv. Comput. Math..
[46] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[47] W. Dahmen,et al. Multilevel preconditioning , 1992 .
[48] Ivo Babuška,et al. Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .
[49] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets II: Implementation and Numerical Results , 1998, SIAM J. Sci. Comput..
[50] Christoph Schwab,et al. Low-rank tensor structure of linear diffusion operators in the TT and QTT formats☆ , 2013 .
[51] Harry Yserentant,et al. Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .
[52] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[53] Daniel Kressner,et al. Algorithm 941 , 2014 .
[54] Ivan Oseledets,et al. Approximation of matrices with logarithmic number of parameters , 2009 .
[55] Christine Tobler,et al. Multilevel preconditioning and low‐rank tensor iteration for space–time simultaneous discretizations of parabolic PDEs , 2015, Numer. Linear Algebra Appl..