Identification of composite uncertain material parameters from experimental modal data

Abstract Stochastic analysis of structures using probability methods requires the statistical knowledge of uncertain material parameters. This is often quite easier to identify these statistics indirectly from structure response by solving an inverse stochastic problem. In this paper, a robust and efficient inverse stochastic method based on the non-sampling generalized polynomial chaos method is presented for identifying uncertain elastic parameters from experimental modal data. A data set on natural frequencies is collected from experimental modal analysis for sample orthotropic plates. The Pearson model is used to identify the distribution functions of the measured natural frequencies. This realization is then employed to construct the random orthogonal basis for each vibration mode. The uncertain parameters are represented by polynomial chaos expansions with unknown coefficients and the same random orthogonal basis as the vibration modes. The coefficients are identified via a stochastic inverse problem. The results show good agreement with experimental data.

[1]  Steffen Marburg,et al.  Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion , 2012 .

[2]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[3]  Steffen Marburg,et al.  UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION , 2010 .

[4]  Egon S. Pearson,et al.  Some problems arising in approximating to probability distributions, using moments , 1963 .

[5]  N. Zabaras,et al.  Stochastic inverse heat conduction using a spectral approach , 2004 .

[6]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[7]  Hermann G. Matthies,et al.  A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements , 2012 .

[8]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[9]  Sameer B. Mulani Uncertainty Quantification in Dynamic Problems With Large Uncertainties , 2006 .

[10]  V. Borkar,et al.  Parameter identification in infinite dimensional linear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[11]  Christian Soize,et al.  Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels , 2006 .

[12]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[13]  Hermann G. Matthies,et al.  Sampling-free linear Bayesian update of polynomial chaos representations , 2012, J. Comput. Phys..

[14]  N. Wiener The Homogeneous Chaos , 1938 .

[15]  M. Kendall,et al.  Kendall's Advanced Theory of Statistics: Volume 1 Distribution Theory , 1987 .

[16]  Christian Soize,et al.  A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension , 2011, Computer Methods in Applied Mechanics and Engineering.

[17]  C. Proppe Reliability computation with local polynomial chaos approximations , 2009 .

[18]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[19]  Parameter identification in infinite dimensional linear systems , 1981, CDC 1981.

[20]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[21]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[22]  Christian Soize,et al.  Stochastic modeling and identification of an uncertain computational dynamical model with random fields properties and model uncertainties , 2012, Archive of Applied Mechanics.

[23]  Prasanth B. Nair,et al.  Projection schemes in stochastic finite element analysis , 2004 .

[24]  A. Kiureghian,et al.  OPTIMAL DISCRETIZATION OF RANDOM FIELDS , 1993 .

[25]  S. Marburg,et al.  On Construction of Uncertain Material Parameter using Generalized Polynomial Chaos Expansion from Experimental Data , 2013 .

[26]  G. Genta,et al.  Experimental data modeling: issues in empirical identification of distribution , 2013 .

[27]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .