Identification of composite uncertain material parameters from experimental modal data
暂无分享,去创建一个
[1] Steffen Marburg,et al. Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion , 2012 .
[2] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[3] Steffen Marburg,et al. UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION , 2010 .
[4] Egon S. Pearson,et al. Some problems arising in approximating to probability distributions, using moments , 1963 .
[5] N. Zabaras,et al. Stochastic inverse heat conduction using a spectral approach , 2004 .
[6] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[7] Hermann G. Matthies,et al. A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements , 2012 .
[8] A. W. Kemp,et al. Kendall's Advanced Theory of Statistics. , 1994 .
[9] Sameer B. Mulani. Uncertainty Quantification in Dynamic Problems With Large Uncertainties , 2006 .
[10] V. Borkar,et al. Parameter identification in infinite dimensional linear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[11] Christian Soize,et al. Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels , 2006 .
[12] Christian Soize,et al. Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .
[13] Hermann G. Matthies,et al. Sampling-free linear Bayesian update of polynomial chaos representations , 2012, J. Comput. Phys..
[14] N. Wiener. The Homogeneous Chaos , 1938 .
[15] M. Kendall,et al. Kendall's Advanced Theory of Statistics: Volume 1 Distribution Theory , 1987 .
[16] Christian Soize,et al. A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension , 2011, Computer Methods in Applied Mechanics and Engineering.
[17] C. Proppe. Reliability computation with local polynomial chaos approximations , 2009 .
[18] Roger G. Ghanem,et al. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..
[19] Parameter identification in infinite dimensional linear systems , 1981, CDC 1981.
[20] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[21] Nicholas Zabaras,et al. Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .
[22] Christian Soize,et al. Stochastic modeling and identification of an uncertain computational dynamical model with random fields properties and model uncertainties , 2012, Archive of Applied Mechanics.
[23] Prasanth B. Nair,et al. Projection schemes in stochastic finite element analysis , 2004 .
[24] A. Kiureghian,et al. OPTIMAL DISCRETIZATION OF RANDOM FIELDS , 1993 .
[25] S. Marburg,et al. On Construction of Uncertain Material Parameter using Generalized Polynomial Chaos Expansion from Experimental Data , 2013 .
[26] G. Genta,et al. Experimental data modeling: issues in empirical identification of distribution , 2013 .
[27] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .