Computation of the singular value expansion

A method for computing the singular values and singular functions of real square-integrable kernels is presented. The analysis shows that a “good” discretization always yields a matrix whose singular value decomposition is closely related to the singular value expansion of the kernel. This relationship is important in connection with the solution of ill-posed problems since it shows that regularization of the algebraic problem, derived from an integral equation, is equivalent to regularization of the integral equation itself.ZusammenfassungEine Methode zur Berechnung der singulären Werte und der singulären Funktionen von reellen, quadratisch-integrierbaren Kernen wird dargestellt. Die Analyse zeigt, daß eine „gute” Diskretisierung immer eine Matrix ergibt, deren Singulärwert-Zerlegung mit der Singulärwert-Entwicklung der Kerne eng verbunden ist. Dieser Zusammenhang ist wesentlich, wenn schlecht gestellte Probleme zu lösen sind, weil er zeigt, daß eine Regularisierung des von einer Integralgleichung hergeleiteten algebraischen Problems äquivalent ist zu einer Regularisierung der Integralgleichung.

[1]  Søren Christiansen,et al.  Modifications of some first kind integral equations with logarithmic kernel to improve numerical conditioning , 1985, Computing.

[2]  HansenPer Christian The truncated SVD as a method for regularization , 1987 .

[3]  Lars Eldén,et al.  The Numerical Solution of a Non-Characteristic Cauchy Probelm for a Parabolic Equation , 1983 .

[4]  J. A. Cochran The analysis of linear integral equations , 1973 .

[5]  Kenneth Wright,et al.  Numerical solution of Fredholm integral equations of first kind , 1964, Comput. J..

[6]  William H. Press,et al.  Numerical recipes , 1990 .

[7]  Ulrich Eckhardt,et al.  Numerical Treatment of Incorrectly Posed Problems , 1980 .

[8]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[9]  Per Christian Hansen,et al.  An SVD analysis of linear algebraic equations derived from first kind integral equations , 1985 .

[10]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[11]  O. Strand Theory and methods related to the singular-function expansion and Landweber's iteration for integral equations of the first kind , 1974 .

[12]  J. Varah A Practical Examination of Some Numerical Methods for Linear Discrete Ill-Posed Problems , 1979 .

[13]  F. Hoog Review of Fredholm Equations of the First Kind , 1980 .

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  M. Baart The Use of Auto-correlation for Pseudo-rank Determination in Noisy III-conditioned Linear Least-squares Problems , 1982 .

[16]  G. R. Richter Numerical Solution of Integral Equations of the First Kind with Nonsmooth Kernels , 1978 .

[17]  R. Hanson A Numerical Method for Solving Fredholm Integral Equations of the First Kind Using Singular Values , 1971 .

[18]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[19]  Jack Dongarra,et al.  LINPACK Users' Guide , 1987 .

[20]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .