Computational modelling of crack-induced permeability evolution in granite with dilatant cracks

Abstract A computational homogenisation technique is used to investigate the role of fine-scale dilatancy on the stress-induced permeability evolution in a granitic material. A representative volume element incorporating the heterogeneous fabric of the material is combined with a fine-scale interfacial decohesion model to account for microcracking. A material model that incorporates dilatancy is used to assess the influence of dilatant processes at the fine scale on the averaged mechanical behaviour and on permeability evolution, based on the evolving opening of microcracks. The influence of the stress states on the evolution of the spatially averaged permeability obtained from simulations is examined and compared with experimental results available in the literature. It is shown that the dilatancy-dependent permeability evolution can be successfully modelled by the averaging approach.

[1]  Mark Kachanov,et al.  On the problems of crack interactions and crack coalescence , 2013 .

[2]  A. Selvadurai,et al.  Effective medium methods and a computational approach for estimating geomaterial properties of porous materials with randomly oriented ellipsoidal pores , 2011 .

[3]  G. Zijl A Numerical Formulation for Moisture Migration in Masonry , 1999 .

[4]  Yann Charles,et al.  A modular damage model for quasi-brittle solids – interaction between initial and induced anisotropy , 2002 .

[5]  John A. Hudson,et al.  The influence of the intermediate principal stress on rock failure behaviour: A numerical study , 2012 .

[6]  Chuangbing Zhou,et al.  Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks , 2010 .

[7]  Leandro R. Alejano,et al.  Dilation in granite during servo-controlled triaxial strength tests , 2013 .

[8]  Vijay Sonnad,et al.  A comparison of direct and preconditioned iterative techniques for sparse, unsymmetric systems of linear equations , 1989 .

[9]  Mechanical characterization of pink lac du Bonnet granite: Evidence of nonlinearity and anisotropy , 1997 .

[10]  E. T. Brown,et al.  A study of the mechanical behaviour of coal for pillar design , 1998 .

[11]  John C. Small,et al.  Behavior of joints and interfaces subjected to water pressure , 1997 .

[12]  Franz-Josef Ulm,et al.  A micromechanical analysis of damage propagation in fluid-saturated cracked media , 2006 .

[13]  Jean-Raynald de Dreuzy,et al.  Hydraulic properties of two‐dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures , 2001 .

[14]  D. Halm,et al.  Anisotropic damage in quasi-brittle solids: modelling, computational issues and applications , 2000 .

[15]  J. P. Harrison,et al.  Development of a hydro-mechanical local degradation approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks , 2005 .

[16]  Thierry Massart,et al.  A tomographic imagery segmentation methodology for three-phase geomaterials based on simultaneous region growing , 2014 .

[17]  Jonny Rutqvist,et al.  Stress-dependent permeability of fractured rock masses: A numerical study , 2004 .

[18]  D. Halm,et al.  An anisotropic model of damage and frictional sliding for brittle materials , 1998 .

[19]  M. Kachanov,et al.  A microcrack model of rock inelasticity part II: Propagation of microcracks , 1982 .

[20]  J. Harrison,et al.  An empirical dilatancy index for the dilatant deformation of rock , 2004 .

[21]  R. Ribacchi,et al.  Mechanical Tests on Pervasively Jointed Rock Material: Insight into Rock Mass Behaviour , 2000 .

[22]  A.P.S. Selvadurai,et al.  Stress‐induced permeability evolution in a quasi‐brittle geomaterial , 2012 .

[23]  Craig J. Hickey,et al.  Mechanics of porous media , 1994 .

[24]  Werner Goldsmith,et al.  Static and dynamic fracture strength of Barre granite , 1976 .

[25]  Robert W. Zimmerman,et al.  Estimating the Hydraulic Conductivity of Two-Dimensional Fracture Networks Using Network Geometric Properties , 2010, Transport in Porous Media.

[26]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[27]  André Dragon,et al.  Modelling of quasi-brittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding , 2008 .

[28]  Mgd Marc Geers,et al.  Structural Damage Analysis of Masonry Walls using Computational Homogenization , 2007 .

[29]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[30]  A.P.S. Selvadurai,et al.  A model for coupled mechanical and hydraulic behaviour of a rock joint , 1998 .

[31]  Ahmad Pouya,et al.  Numerical simulation of damage–Permeability relationship in brittle geomaterials , 2010 .

[32]  N. Barton,et al.  Joint aperture and roughness in the prediction of flow and groutability of rock masses , 1997 .

[33]  Paulo B. Lourenço,et al.  Experimental characterization of the tensile behaviour of granites , 2008 .

[34]  B. Shen,et al.  THE DISTURBED ZONE AROUND TUNNELS IN JOINTED ROCK MASSES , 1997 .

[35]  A. Selvadurai,et al.  Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains , 2010 .

[36]  Ki-Bok Min,et al.  Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK , 2004 .

[37]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[38]  J. Shao,et al.  Evolution of poroelastic properties and permeability in damaged sandstone , 2010 .

[39]  Sheng-hong Chen,et al.  Numerical estimation of REV and permeability tensor for fractured rock masses by composite element method , 2008 .

[40]  O. K. Mahabadi,et al.  An Example of Realistic Modelling of Rock Dynamics Problems: FEM/DEM Simulation of Dynamic Brazilian Test on Barre Granite , 2010 .

[41]  A. Pouya,et al.  Permeability of 3D discontinuity networks: New tensors from boundary-conditioned homogenisation , 2009 .

[42]  Jean-Raynald de Dreuzy,et al.  Hydraulic properties of two‐dimensional random fracture networks following a power law length distribution: 1. Effective connectivity , 2001 .

[43]  O. K. Mahabadi,et al.  Investigating the Influence of Micro-scale Heterogeneity and Microstructure on the Failure and Mechanical Behaviour of Geomaterials , 2012 .

[44]  J. Shao,et al.  Coupled modeling of damage growth and permeability variation in brittle rocks , 2006 .

[45]  A. Scheidegger General Theory of Dispersion in Porous Media , 1961 .

[46]  A. Selvadurai,et al.  Mechanics of Poroelastic Media , 1996 .

[47]  Ivan Vasconcelos,et al.  The influence of crack shape on the effective elasticity of fractured rocks , 2006 .

[48]  O. Stephansson,et al.  Shear fracture energy of Stripa granite : Results of controlled triaxial testing , 1990 .

[49]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[50]  Evert Hoek,et al.  Practical estimates of rock mass strength , 1997 .

[51]  Alireza Baghbanan,et al.  Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture , 2008 .

[52]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[53]  A.P.S. Selvadurai,et al.  Permeability Hysterisis of Limestone During Isotropic Compression , 2008, Ground water.

[54]  E. Alonso,et al.  Considerations of the dilatancy angle in rocks and rock masses , 2005 .

[55]  M. Geers,et al.  Computational homogenization for heat conduction in heterogeneous solids , 2008 .

[56]  Benoît Mercatoris,et al.  A coupled two‐scale computational scheme for the failure of periodic quasi‐brittle thin planar shells and its application to masonry , 2011 .

[57]  Gudmundur S. Bodvarsson,et al.  Hydraulic conductivity of rock fractures , 1996 .

[58]  F. Bouchelaghem,et al.  Mechanical damage behaviour of an injected sand by periodic homogenization method , 2007 .

[59]  N. A. Chandler,et al.  The progressive fracture of Lac du Bonnet granite , 1994 .

[60]  W. Brekelmans,et al.  Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .

[61]  Françoise Homand,et al.  Damage-induced permeability changes in granite: a case example at the URL in Canada , 2001 .

[62]  Paul W. J. Glover,et al.  Size effect on aperture and permeability of a fracture as estimated in large synthetic fractures , 2006 .

[63]  A. Dragon,et al.  Discrete approach for modelling quasi-brittle damage: conditions on the set of directions , 2007 .

[64]  B. Stimpson,et al.  Effects of Grain Size on the Initiation and Propagation Thresholds of Stress-induced Brittle Fractures , 1999 .

[65]  Jonny Rutqvist,et al.  Thermally induced mechanical and permeability changes around a nuclear waste repository -- a far-field study based on equivalent properties determined by a discrete approach , 2005 .

[66]  Grégory Legrain,et al.  An X‐FEM and level set computational approach for image‐based modelling: Application to homogenization , 2011 .

[67]  M. Kachanov,et al.  A microcrack model of rock inelasticity part I: Frictional sliding on microcracks , 1982 .

[68]  T. Massart,et al.  A unified level set based methodology for fast generation of complex microstructural multi-phase RVEs , 2012 .

[69]  Emmanuel M Detournay,et al.  Elastoplastic model of a deep tunnel for a rock with variable dilatancy , 1986 .

[70]  Robert Charlier,et al.  A two scale anisotropic damage model accounting for initial stresses in microcracked materials , 2011 .

[71]  A. Cheng,et al.  Fundamentals of Poroelasticity , 1993 .

[72]  Further development of a plasticity approach to yield in porous rock , 1986 .

[73]  Mark Kachanov,et al.  Effective elasticity of rocks with closely spaced and intersecting cracks , 2006 .

[74]  J. S. Y. Wang,et al.  Validity of cubic law for fluid flow in a deformable rock fracture. Technical information report No. 23 , 1979 .

[75]  O. K. Mahabadi,et al.  A novel approach for micro‐scale characterization and modeling of geomaterials incorporating actual material heterogeneity , 2012 .

[76]  Zhou Gang,et al.  Permeability-strain equations corresponding to the complete stress—strain path of Yinzhuang Sandstone , 1994 .

[77]  I. Djeran-Maigre,et al.  Clay compaction modelling by homogenization theory , 2005 .

[78]  Jian-Fu Shao,et al.  Modelling of induced anisotropic damage in granites , 1999 .

[79]  T. Kiyama,et al.  Permeability In Anisotropic Granite Under Hydrostatic Compression And Triaxial Compression Including Post-failure Region , 1996 .

[80]  M. Kachanov,et al.  Mechanics of crack—microcrack interactions , 1990 .

[81]  N. Challamel,et al.  On the non-conservativeness of a class of anisotropic damage models with unilateral effects , 2006 .

[82]  J. Shao,et al.  A discrete approach for anisotropic plasticity and damage in semi-brittle rocks , 2010 .

[83]  Martin Schanz,et al.  Poroelastodynamics: Linear Models, Analytical Solutions, and Numerical Methods , 2009 .

[84]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[85]  Fredrik Larsson,et al.  Computational homogenization of uncoupled consolidation in micro‐heterogeneous porous media , 2010 .

[86]  K. T. Chau,et al.  Coupling between anisotropic damage and permeability variation in brittle rocks , 2005 .

[87]  M. Zoback,et al.  The effect of microcrack dilatancy on the permeability of westerly granite , 1975 .

[88]  Paulo B. Lourenço,et al.  Compressive Behavior of Granite: Experimental Approach , 2009 .

[89]  Pantelis Liolios,et al.  A smooth hyperbolic failure criterion for cohesive-frictional materials , 2013 .

[90]  L. Dormieux,et al.  Approche micromécanique du couplage perméabilité–endommagement , 2004 .