Detection of the cosmological time dilation of high-redshift quasars

A fundamental prediction of relativistic cosmologies is that, due to the expansion of space, observations of the distant cosmos should be time dilated and appear to run slower than events in the local universe. Whilst observations of cosmological supernovae unambiguously display the expected redshift-dependent time dilation, this has not been the case for other distant sources. Here we present the identification of cosmic time dilation in a sample of 190 quasars monitored for over two decades in multiple wavebands by assessing various hypotheses through Bayesian analysis. This detection counters previous claims that observed quasar variability lacked the expected redshift-dependent time dilation. Hence, as well as demonstrating the claim that the lack of the redshift dependence of quasar variability represents a significant challenge to the standard cosmological model, this analysis further indicates that the properties of quasars are consistent with them being truly cosmologically distant sources.

[1]  Yue Shen,et al.  A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 16 , 2022, The Astrophysical Journal Supplement Series.

[2]  D. Foreman-Mackey,et al.  Gaussian Process Regression for Astronomical Time Series , 2022, Annual Review of Astronomy and Astrophysics.

[3]  M. Hawkins New evidence for a cosmological distribution of stellar mass primordial black holes , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  S. Desai,et al.  Search for cosmological time dilation from gamma-ray bursts — a 2021 status update , 2021, Journal of Cosmology and Astroparticle Physics.

[5]  D. Lorimer,et al.  UvA-DARE (Digital Academic Repository) Fast radio bursts at the dawn of the 2020s , 2022 .

[6]  Y. Sanejouand A framework for the next generation of stationary cosmological models , 2020, International Journal of Modern Physics D.

[7]  Z. Dai,et al.  The physics of fast radio bursts , 2021, Science China Physics, Mechanics & Astronomy.

[8]  Ž. Ivezić,et al.  Improving Damped Random Walk Parameters for SDSS Stripe 82 Quasars with Pan-STARRS1 , 2020, 2012.12907.

[9]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[10]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[11]  D. F. Crawford A problem with the analysis of type Ia supernovae , 2017, 1711.11237.

[12]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[13]  M. López-Corredoira Tests and Problems of the Standard Model in Cosmology , 2017, Foundations of Physics.

[14]  Daniel Foreman-Mackey,et al.  DNest4: Diffusive Nested Sampling in C++ and Python , 2016, 1606.03757.

[15]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[16]  O. Chashchina,et al.  Expanding Space, Quasars and St. Augustine’s Fireworks , 2014, 1409.1708.

[17]  N. Butler,et al.  Investigating signatures of cosmological time dilation in duration measures of prompt gamma-ray burst light curves , 2014, 1408.6525.

[18]  D. Wei,et al.  COSMOLOGICAL TIME DILATION IN DURATIONS OF SWIFT LONG GAMMA-RAY BURSTS , 2013, 1309.5612.

[19]  G. Starkman,et al.  Using quasars as standard clocks for measuring cosmological redshift. , 2012, Physical review letters.

[20]  D. Kocevski,et al.  ON THE LACK OF TIME DILATION SIGNATURES IN GAMMA-RAY BURST LIGHT CURVES , 2011, 1110.6175.

[21]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.

[22]  M. R. S. Hawkins,et al.  On time dilation in quasar light curves , 2010, 1004.1824.

[23]  Brandon C. Kelly,et al.  ARE THE VARIATIONS IN QUASAR OPTICAL FLUX DRIVEN BY THERMAL FLUCTUATIONS? , 2009, 0903.5315.

[24]  W. M. Wood-Vasey,et al.  Time Dilation in Type Ia Supernova Spectra at High Redshift , 2008, 0804.3595.

[25]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[26]  Tony O’Hagan Bayes factors , 2006 .

[27]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[28]  R. Foley,et al.  A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex , 2005, astro-ph/0504481.

[29]  M. Hawkins Time Dilation and Quasar Variability , 2001, astro-ph/0105073.

[30]  A. S. Fruchter,et al.  Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves , 2001, astro-ph/0104382.

[31]  A. Riess,et al.  Time Dilation from Spectral Feature Age Measurements of Type Ia Supernovae , 1997, astro-ph/9707260.

[32]  A. Taylor,et al.  Quasar Variability and Gravitational Microlensing , 1997 .

[33]  R. Kirshner,et al.  Time Dilation in the Light Curve of the Distant Type Ia Supernova SN 1995K , 1996 .

[34]  C. Kouveliotou,et al.  DETECTION OF SIGNATURE CONSISTENT WITH COSMOLOGICAL TIME DILATION IN GAMMA-RAY BURSTS , 1993, astro-ph/9312049.

[35]  M. R. S. Hawkins,et al.  Gravitational microlensing, quasar variability and missing matter , 1993, Nature.

[36]  Edwin E. Salpeter,et al.  Accretion of Interstellar Matter by Massive Objects. , 1964 .

[37]  M. Schmidt,et al.  3C 273 : A Star-Like Object with Large Red-Shift , 1963, Nature.

[38]  O. C. Wilson,et al.  Possible Applications of Supernovae to the Study of the Nebular Red Shifts. , 1939 .

[39]  G. Lemaître A Homogeneous Universe of Constant Mass and Increasing Radius accounting for the Radial Velocity of Extra-galactic Nebulæ , 1931 .

[40]  G. Lemaître Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques , 1927 .