On the Visualisation of Argumentation Graphs to Support Text Interpretation

The recent evolution in Natural Language Processing (NLP) methods, in particular in the field of argumentation mining, has the potential to transform the way we interact with text, supporting the interpretation and analysis of complex discourse and debates. Can a graphic visualisation of complex argumentation enable a more critical interpretation of the arguments? This study focuses on analysing the impact of argumentation graphs (AGs) compared with regular texts for supporting argument interpretation. We found that AGs outperformed the extrinsic metrics throughout most UEQ scales as well as the NASA-TLX workload in all the terms but not in temporal or physical demand. The AG model was liked by a more significant number of participants, despite the fact that both the text-based and AG models yielded comparable outcomes in the critical interpretation in terms of working memory and altering participants decisions. The interpretation process involves reference to argumentation schemes (linked to critical questions (CQs)) in AGs. Interestingly, we found that the participants chose more CQs (using argument schemes in AGs) when they were less familiar with the argument topics, making AG schemes on some scales (relatively) supportive of the interpretation process. Therefore, AGs were considered to deliver a more critical approach to argument interpretation, especially with unfamiliar topics. Based on the 25 participants conducted in this study, it appears that AG has demonstrated an overall positive effect on the argument interpretation process.

[1]  Dietrich Trautmann,et al.  Aspect-Based Argument Mining , 2020, ARGMINING.

[2]  Benno Stein,et al.  Visual Analysis of Argumentation in Essays , 2020, IEEE Transactions on Visualization and Computer Graphics.

[3]  Young Hoan Cho,et al.  Learning analytics dashboards for adaptive support in face-to-face collaborative argumentation , 2020, Computers & Education.

[4]  Yaser Al-Onaizan,et al.  Resource-Enhanced Neural Model for Event Argument Extraction , 2020, FINDINGS.

[5]  Ralph Bergmann,et al.  Towards an Argument Mining Pipeline Transforming Texts to Argument Graphs , 2020, COMMA.

[6]  Chris Reed,et al.  Argument Mining: A Survey , 2020, Computational Linguistics.

[7]  Claire Cardie,et al.  The Role of Pragmatic and Discourse Context in Determining Argument Impact , 2019, EMNLP.

[8]  Deniz Sarıbaş,et al.  An Argumentative Tool for Facilitating Critical Evaluation , 2019, Science & Education.

[9]  Mennatallah El-Assady,et al.  VIANA: Visual Interactive Annotation of Argumentation , 2019, 2019 IEEE Conference on Visual Analytics Science and Technology (VAST).

[10]  Matthias Hagen,et al.  TARGER: Neural Argument Mining at Your Fingertips , 2019, ACL.

[11]  Nancy L. Green,et al.  Argument schemes and visualization software for critical thinking about international politics , 2018, Argument Comput..

[12]  A. Elga,et al.  Improving analytical reasoning and argument understanding: a quasi-experimental field study of argument visualization , 2018, npj Science of Learning.

[13]  John Millar Carroll,et al.  Managing Conflict in Online Debate Communities: Foregrounding Moderators' Beliefs and Values on Kialo , 2018 .

[14]  Madalina Croitoru,et al.  DAGGER: Datalog+/- Argumentation Graph GEneRator , 2018, AAMAS.

[15]  Serena Villata,et al.  Five Years of Argument Mining: a Data-driven Analysis , 2018, IJCAI.

[16]  Iryna Gurevych,et al.  ArgumenText: Searching for Arguments in Heterogeneous Sources , 2018, NAACL.

[17]  M. Hoffmann Stimulating Reflection and Self-correcting Reasoning Through Argument Mapping: Three Approaches , 2018 .

[18]  D. Walton,et al.  Argumentation Schemes. History, Classifications, and Computational Applications , 2017, FLAP.

[19]  Benno Stein,et al.  Building an Argument Search Engine for the Web , 2017, ArgMining@EMNLP.

[20]  Anthony Hunter,et al.  Analysis of Medical Arguments from Patient Experiences Expressed on the Social Web , 2017, IEA/AIE.

[21]  Paolo Torroni,et al.  MARGOT: A web server for argumentation mining , 2016, Expert Syst. Appl..

[22]  Robert Bembenik,et al.  Towards Automatic Argument Extraction and Visualization in a Deliberative Model of Online Consultations for Local Governments , 2016, ADBIS.

[23]  Daniel A. Keim,et al.  ConToVi: Multi‐Party Conversation Exploration using Topic‐Space Views , 2016, Comput. Graph. Forum.

[24]  Douglas Walton,et al.  A classification system for argumentation schemes , 2015, Argument Comput..

[25]  Wei Lee Woon,et al.  Argument Visualization and Narrative Approaches for Collaborative Spatial Decision Making and Knowledge Construction: A Case Study for an Offshore Wind Farm Project , 2015, DARE.

[26]  Brian Ecker,et al.  Argument Mining: Extracting Arguments from Online Dialogue , 2015, SIGDIAL Conference.

[27]  Paolo Torroni,et al.  Argument Mining: A Machine Learning Perspective , 2015, TAFA.

[28]  Chris Reed,et al.  Combining Argument Mining Techniques , 2015, ArgMining@HLT-NAACL.

[29]  Andreas Kerren,et al.  Text visualization techniques: Taxonomy, visual survey, and community insights , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[30]  Pietro Baroni,et al.  Automatic evaluation of design alternatives with quantitative argumentation , 2015, Argument Comput..

[31]  Michael Hoffmann,et al.  Understanding Ill-Structured Engineering Ethics Problems Through a Collaborative Learning and Argument Visualization Approach , 2014, Sci. Eng. Ethics.

[32]  Douglas Walton,et al.  Argument Mining by Applying Argumentation Schemes , 2012 .

[33]  Douglas Walton,et al.  Building a System for Finding Objections to an Argument , 2012 .

[34]  Víctor de Lorenzo,et al.  EnvMine: A text-mining system for the automatic extraction of contextual information , 2010, BMC Bioinformatics.

[35]  Katie Atkinson,et al.  Using Computational Argumentation to Support E-participation , 2009, IEEE Intelligent Systems.

[36]  Akrivi Katifori,et al.  Ontology visualization methods—a survey , 2007, CSUR.

[37]  Henry Prakken,et al.  The Carneades model of argument and burden of proof , 2007, Artif. Intell..

[38]  Wayne Grennan,et al.  Informal Logic: Issues and Techniques , 1997 .

[39]  Martin Mauve,et al.  deliberate - Online Argumentation with Collaborative Filtering , 2020, Comma.

[40]  Brian Plüss,et al.  PEOPLES: From Private Responses to Messages to Depolarisation Nudges in Two-Party Adversarial Online Talk , 2020, COMMA.

[41]  Anthony Hunter,et al.  Generating Instantiated Argument Graphs from Probabilistic Information , 2020, ECAI.

[42]  Sebastian Rudolph,et al.  Neva - Extension Visualization for Argumentation Frameworks , 2020, COMMA.

[43]  Mathias Riechert,et al.  Improving argumentation visualization of multi-stakeholder development processes – a prototyping case , 2018 .

[44]  Rüdiger Zarnekow,et al.  Using argumentation visualization to foster transparency of development processes , 2018 .

[45]  Chris Reed,et al.  Argument Mining Using Argumentation Scheme Structures , 2016, COMMA.

[46]  Muhammad Kashif Hanif,et al.  Text Mining: Techniques, Applications and Issues , 2016 .

[47]  Manfred Stede,et al.  From Argument Diagrams to Argumentation Mining in Texts: A Survey , 2013, Int. J. Cogn. Informatics Nat. Intell..

[48]  Chris Reed,et al.  Argumentation Schemes , 2008 .

[49]  D. Walton Argumentation Schemes for Presumptive Reasoning , 1995 .

[50]  Manfred Kienpointner Alltagslogik : Struktur und Funktion von Argumentationsmustern , 1992 .