Eigenvalue Bounds, Spectral Partitioning, and Metrical Deformations via Flows

We present a new method for upper bounding the second eigenvalue of theLaplacian of graphs. Our approach uses multi-commodity flows to deform the geometry of the graph; we embed the resulting metric into Euclidean space to recover a bound on the Rayleigh quotient. Using this, we show that every n-vertex graph of genus g and maximum degree d satisfies lambda2(G) = O((g+1)3d/n).This recovers the O(d/n) bound of Spielman and Teng for planar graphs, and compares to Kelner's bound of O((g+1)poly(d)/n), but our proof does not make use of conformal mappings or circle packings. We are thus able to extend this to resolve positively a conjecture of Spielman and Teng, by proving that lambda2(G) = O(dh6log h/n) whenever G is Kh-minor free. This shows, in particular, that spectral partitioning can be used to recover O(radicn)-sized separators in bounded degree graphs that exclude a fixed minor. We extend this further by obtaining nearly optimal bounds on lambda2 for graphs which exclude small-depth minors in the sense of Plotkin, Rao, and Smith. Consequently, we show that spectral algorithms find small separators in a general class of geometric graphs. Moreover, while the standard "sweep'' algorithm applied to the second eigenvector may fail to find good quotient cuts in graphs of unbounded degree, our approach produces a vector that works for arbitrary graphs. This yields an alternate proof of the result of Alon, Seymour, and Thomas that every excluded-minor family of graphs has O(radicn)-node balanced separators.

[1]  Yuri Rabinovich,et al.  On Average Distortion of Embedding Metrics into the Line , 2008, Discret. Comput. Geom..

[2]  Shang-Hua Teng,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[3]  Yuri Rabinovich On average distortion of embedding metrics into the line and into L1 , 2003, STOC '03.

[4]  D WilliamsRoy Performance of dynamic load balancing algorithms for unstructured mesh calculations , 1991 .

[5]  Gary L. Miller,et al.  Separators in two and three dimensions , 1990, STOC '90.

[6]  Shang-Hua Teng,et al.  Combinatorial aspects of geometric graphs , 1998, Comput. Geom..

[7]  S. Vavasis,et al.  Geometric Separators for Finite-Element Meshes , 1998, SIAM J. Sci. Comput..

[8]  Gary L. Miller,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.

[9]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[10]  A. GRIGOR’YAN DECOMPOSITION OF A METRIC SPACE BY CAPACITORS , 2004 .

[11]  Jonathan A. Kelner Spectral partitioning, eigenvalue bounds, and circle packings for graphs of bounded genus , 2004, STOC '04.

[12]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[13]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[14]  Frank Harary,et al.  Graph Theory , 2016 .

[15]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[16]  Béla Bollobás,et al.  Hadwiger's Conjecture is True for Almost Every Graph , 1980, Eur. J. Comb..

[17]  F. Shahrokhi,et al.  The Crossing Number of a Graph on a Compact 2-Manifold , 1996 .

[18]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Martine D. F. Schlag,et al.  Spectral K-way ratio-cut partitioning and clustering , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[22]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[23]  Kunal Talwar,et al.  An Improved Decomposition Theorem for Graphs Excluding a Fixed Minor , 2003, RANDOM-APPROX.

[24]  T. Chan,et al.  A framework for the analysis and construction of domain decomposition preconditioners , 1988 .

[25]  Yuval Rabani,et al.  Approximation algorithms for the 0-extension problem , 2001, SODA '01.

[26]  Horst D. Simon,et al.  Partitioning of unstructured problems for parallel processing , 1991 .

[27]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[28]  Milena Mihail,et al.  Conductance and convergence of Markov chains-a combinatorial treatment of expanders , 1989, 30th Annual Symposium on Foundations of Computer Science.

[29]  Satish Rao,et al.  Shallow excluded minors and improved graph decompositions , 1994, SODA '94.

[30]  R. J. Duffin,et al.  The extremal length of a network , 1962 .

[31]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[32]  O. Schramm Square tilings with prescribed combinatorics , 1993 .

[33]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[34]  James R. Lee,et al.  Improved Approximation Algorithms for Minimum Weight Vertex Separators , 2008, SIAM J. Comput..

[35]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[36]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[37]  Roy D. Williams,et al.  Performance of dynamic load balancing algorithms for unstructured mesh calculations , 1991, Concurr. Pract. Exp..

[38]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[39]  Robert Krauthgamer,et al.  Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[40]  F. Thomas Leighton,et al.  Complexity Issues in VLSI , 1983 .

[41]  Wenceslas Fernandez de la Vega,et al.  On the maximum density of graphs which have no subcontraction to K3 , 1983, Discrete Mathematics.

[42]  Philip N. Klein,et al.  Excluded minors, network decomposition, and multicommodity flow , 1993, STOC.

[43]  Zheng-Xu He,et al.  Hyperbolic and parabolic packings , 1995, Discret. Comput. Geom..

[44]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[45]  Tony F. Chan,et al.  Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes , 1994 .

[46]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[47]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[48]  Stephen Guattery,et al.  On the Quality of Spectral Separators , 1998, SIAM J. Matrix Anal. Appl..

[49]  K. Wagner,et al.  Graph Minor Theory , 2005 .

[50]  Nicholas J. Korevaar Upper bounds for eigenvalues of conformal metrics , 1993 .

[51]  Shing-Tung Yau,et al.  Eigenvalues of the laplacian of compact Riemann surfaces and minimal submanifolds , 1980 .

[52]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[53]  James R. Lee,et al.  Eigenvalue Bounds, Spectral Partitioning, and Metrical Deformations via Flows , 2008, FOCS.

[54]  Andrew B. Kahng,et al.  Recent directions in netlist partitioning: a survey , 1995, Integr..