An Optimal Probabilistic Graphical Model for Point Set Matching

We present a probabilistic graphical model for point set matching. By using a result about the redundancy of the pairwise distances in a point set, we represent the binary relations over a simple triangulated graph that retains the same informational content as the complete graph. The maximal clique size of this resultant graph is independent of the point set sizes, what enables us to perform exact inference in polynomial time with a Junction Tree algorithm. The resulting technique is optimal in the Maximum a Posteriori sense. Experiments show that the algorithm significantly outperforms standard probabilistic relaxation labeling.

[1]  Edwin R. Hancock,et al.  Spectral correspondence for point pattern matching , 2003, Pattern Recognit..

[2]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Tatsuya Akutsu,et al.  Point matching under non-uniform distortions , 2003, Discret. Appl. Math..

[4]  Edwin R. Hancock,et al.  Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[6]  Pedro Larrañaga,et al.  An Introduction to Probabilistic Graphical Models , 2002, Estimation of Distribution Algorithms.

[7]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[8]  D. T. Lee,et al.  Point Set pattern matching ind-dimensions , 2005, Algorithmica.

[9]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  E. Dubois,et al.  Digital picture processing , 1985, Proceedings of the IEEE.

[11]  Michael I. Jordan Graphical Models , 2003 .

[12]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Hermann Haken,et al.  Stereo vision by self-organization , 1994, Biological Cybernetics.