Sensitivity analysis of limit cycle oscillations

[1]  Timothy J. Barth,et al.  Space-Time Error Representation and Estimation in Navier-Stokes Calculations , 2013 .

[2]  David L. Darmofal,et al.  Effect of Small-Scale Output Unsteadiness on Adjoint-Based Sensitivity , 2010 .

[3]  David W. Zingg,et al.  A hybrid algorithm for far-field noise minimization , 2010 .

[4]  Sanjay Mittal,et al.  An adjoint method for shape optimization in unsteady viscous flows , 2010, J. Comput. Phys..

[5]  M. Rumpfkeil,et al.  The optimal control of unsteady flows with a discrete adjoint method , 2010 .

[6]  Jacob K. White,et al.  Sensitivity Analysis for Oscillating Dynamical Systems , 2009, SIAM J. Sci. Comput..

[7]  Qiqi Wang,et al.  Minimal Repetition Dynamic Checkpointing Algorithm for Unsteady Adjoint Calculation , 2009, SIAM J. Sci. Comput..

[8]  Dimitri J. Mavriplis,et al.  Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow Problems with Deforming Meshes , 2008 .

[9]  David W. Zingg,et al.  Unsteady Optimization Using a Discrete Adjoint Approach Applied to Aeroacoustic Shape Design , 2008 .

[10]  Antony Jameson,et al.  Optimum Shape Design for Unsteady Flows with Time-Accurate Continuous and Discrete Adjoint Methods , 2007 .

[11]  Li Wang,et al.  Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations , 2006, J. Comput. Phys..

[12]  A. Jameson,et al.  Optimum Shape Design for Unsteady Three-Dimensional Viscous Flows Using a Nonlinear Frequency-Domain Method , 2006 .

[13]  Jeffrey P. Thomas,et al.  Discrete Adjoint Approach for Modeling Unsteady Aerodynamic Design Sensitivities , 2005 .

[14]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[15]  Antony Jameson,et al.  OPTIMUM SHAPE DESIGN FOR UNSTEADY FLOWS USING TIME ACCURATE AND NON-LINEAR FREQUENCY DOMAIN METHODS , 2003 .

[16]  Michael B. Giles,et al.  The harmonic adjoint approach to unsteady turbomachinery design , 2002 .

[17]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[18]  Jacques Periaux,et al.  Active Control and Drag Optimization for Flow Past a Circular Cylinder , 2000 .

[19]  Andreas Griewank,et al.  Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.

[20]  David P. Lockard,et al.  AN EFFICIENT, TWO-DIMENSIONAL IMPLEMENTATION OF THE FFOWCS WILLIAMS AND HAWKINGS EQUATION , 2000 .

[21]  M. Allen,et al.  Sensitivity analysis of the climate of a chaotic system , 2000 .

[22]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[23]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[24]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[25]  W. V. Loscutoff,et al.  General sensitivity theory , 1972 .

[26]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .