The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram

Abstract The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.

[1]  Herbert Edelsbrunner,et al.  The Area Derivative of a Space-Filling Diagram , 2004, Discret. Comput. Geom..

[2]  P-M König,et al.  Morphological thermodynamics of fluids: shape dependence of free energies. , 2004, Physical review letters.

[3]  Thomas Simonson,et al.  Solvation Free Energies Estimated from Macroscopic Continuum Theory: An Accuracy Assessment , 1994 .

[4]  H. Hadwiger Beweis eines Funktionalsatzes für konvexe Körper , 1951 .

[5]  D. Chandler,et al.  Hydrophobicity at Small and Large Length Scales , 1999 .

[6]  Shuntaro Chiba,et al.  A morphometric approach for the accurate solvation thermodynamics of proteins and ligands , 2013, J. Comput. Chem..

[7]  Thomas Simonson,et al.  Electrostatics and dynamics of proteins , 2003 .

[8]  Herbert Edelsbrunner,et al.  The weighted-volume derivative of a space-filling diagram , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Mecke A morphological model for complex fluids , 1996 .

[10]  H. Edelsbrunner The union of balls and its dual shape , 1995 .

[11]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[12]  K. Mecke,et al.  Solvation of proteins: linking thermodynamics to geometry. , 2007, Physical review letters.

[13]  Ulrich Bauer,et al.  The Morse theory of Čech and Delaunay complexes , 2013, 1312.1231.

[14]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[15]  Arseniy Akopyan,et al.  The Weighted Mean Curvature Derivative of a Space-Filling Diagram , 2019, Computational and Mathematical Biophysics.

[16]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[17]  Nicolas Nicolaïdès,et al.  Mémoire sur la théorie générale des surfaces , 1864 .

[18]  M. Kinoshita,et al.  Morphometric approach to the solvation free energy of complex molecules. , 2006, Physical review letters.