Measure-transformed quasi maximum likelihood estimation with application to source localization

In this paper, we consider the problem of estimating a deterministic vector parameter when the likelihood function is unknown or not expressible. We develop an estimator, called measure-transformed quasi maximum likelihood estimator (MT-QMLE), that minimizes the empirical Kullback-Leibler divergence between the transformed probability measure of the data and a hypothesized Gaussian probability distribution. By judicious choice of the transform we show that the proposed estimator can gain sensitivity to higher-order statistical information and resilience to outliers. Under some regularity conditions we show that the MT-QMLE is consistent, asymptotically normal and unbiased. Furthermore, we derive a necessary and sufficient condition for its asymptotic efficiency. The MT-QMLE is applied to source localization in a simulation example that illustrates its sensitivity to higher-order information and resilience to outliers.

[1]  Boaz Porat,et al.  Digital Processing of Random Signals: Theory and Methods , 2008 .

[2]  Kellen Petersen August Real Analysis , 2009 .

[3]  H. Cramér A contribution to the theory of statistical estimation , 1946 .

[4]  L. Scharf,et al.  Statistical Signal Processing of Complex-Valued Data: The Theory of Improper and Noncircular Signals , 2010 .

[5]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[6]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[7]  L. Scharf,et al.  Statistical Signal Processing of Complex-Valued Data: Notation , 2010 .

[8]  A. Yeredor MUSIC using Off-Origin Hessians of the Second Characteristic Function , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[9]  K. Pearson Contributions to the Mathematical Theory of Evolution , 1894 .

[10]  Arie Yeredor,et al.  Substituting the cumulants in the super-exponential blind equalization algorithm , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[12]  Arie Yeredor,et al.  Blind MIMO identification using the second characteristic function , 2004, IEEE Transactions on Signal Processing.

[13]  Steven Kay,et al.  Maximum Likelihood Estimator Under a Misspecified Model With High Signal-to-Noise Ratio , 2011, IEEE Transactions on Signal Processing.

[14]  Alfred O. Hero,et al.  Robust measure transformed music for DOA estimation , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  A. Yeredor Blind channel estimation using first and second derivatives of the characteristic function , 2002, IEEE Signal Processing Letters.

[16]  H. Vincent Poor,et al.  Complex Elliptically Symmetric Distributions: Survey, New Results and Applications , 2012, IEEE Transactions on Signal Processing.

[17]  Alon Slapak,et al.  Charrelation and Charm: Generic Statistics Incorporating Higher-Order Information , 2012, IEEE Transactions on Signal Processing.

[18]  Alon Slapak,et al.  "Weighting for more": Enhancing characteristic-function based ICA with asymptotically optimal weighting , 2011, Signal Process..

[19]  Arie Yeredor,et al.  Blind source separation via the second characteristic function , 2000, Signal Process..

[20]  Alon Slapak,et al.  Charrelation-based estimation of the parameters of non-Gaussian autoregressive processes , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[21]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[22]  Alfred O. Hero,et al.  On Measure Transformed Canonical Correlation Analysis , 2011, IEEE Transactions on Signal Processing.

[23]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[24]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[25]  Arie Yeredor,et al.  Blind MIMO identification using the second characteristic function , 2005 .

[26]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[27]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Alfred O. Hero,et al.  Measure transformed canonical correlation analysis with application to financial data , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[29]  K. Athreya,et al.  Measure Theory and Probability Theory , 2006 .

[30]  Huaiyu Zhu On Information and Sufficiency , 1997 .