ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE

We use data from the first 100 deg2 field observed by the South Pole Telescope (SPT) in 2008 to measure the angular power spectrum of temperature anisotropies contributed by the background of dusty star-forming galaxies (DSFGs) at millimeter wavelengths. From the auto- and cross-correlation of 150 and 220 GHz SPT maps, we significantly detect both Poisson distributed and, for the first time at millimeter wavelengths, clustered components of power from a background of DSFGs. The spectral indices of the Poisson and clustered components are found to be and α C 150–220 = 3.8 ± 1.3, implying a steep scaling of the dust emissivity index β ~ 2. The Poisson and clustered power detected in SPT, BLAST (at 600, 860, and 1200 GHz), and Spitzer (1900 GHz) data can be understood in the context of a simple model in which all galaxies have the same graybody spectrum with dust emissivity index of β = 2 and dust temperature Td = 34 K. In this model, half of the 150 GHz background light comes from redshifts greater than 3.2. We also use the SPT data to place an upper limit on the amplitude of the kinetic Sunyaev-Zel'dovich power spectrum at l = 3000 of 13 μK2 at 95% confidence.

[1]  James J. Bock,et al.  BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.

[2]  S. Dodelson,et al.  Impact of Inhomogeneous Reionization on Cosmic Microwave Background Anisotropy , 1998, astro-ph/9805012.

[3]  S. Chapman,et al.  Submillimetre and far-infrared spectral energy distributions of galaxies: the luminosity-temperature relation and consequences for photometric redshifts , 2002, astro-ph/0209450.

[4]  O. Fèvre,et al.  The Canada-UK Deep Submillimeter Survey: First Submillimeter Images, the Source Counts, and Resolution of the Background , 1998, astro-ph/9808040.

[5]  C. Baccigalupi,et al.  Predictions for statistical properties of forming spheroidal galaxies , 2003 .

[6]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[7]  G. Rieke,et al.  The Cosmic Infrared Background Resolved by Spitzer. Contributions of Mid-Infrared Galaxies to the Far-Infrared Background. , 2006, astro-ph/0603208.

[8]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.

[9]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[10]  The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground , 2008 .

[11]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[12]  A. Hu,et al.  Secondary Cosmic Microwave Background Anisotropies in a Universe Reionized in Patches , 1998, astro-ph/9803188.

[13]  A. Tartari,et al.  The Contribution of the Unresolved Extragalactic Radio Sources to the Brightness Temperature of the Sky , 2008, 0803.4138.

[14]  J. Dunlop,et al.  RADIO AND MID-INFRARED IDENTIFICATION OF BLAST SOURCE COUNTERPARTS IN THE CHANDRA DEEP FIELD SOUTH , 2009, 0904.1204.

[15]  M. Zaldarriaga,et al.  The Far-Infrared Background Correlation with Cosmic Microwave Background Lensing , 2003 .

[16]  C. Baccigalupi,et al.  Astrophysical and cosmological information from large-scale submillimetre surveys of extragalactic sources , 2007, astro-ph/0703210.

[17]  James J. Bock,et al.  BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND , 2009, 0904.1205.

[18]  J. Kneib,et al.  Submillimeter Galaxies , 2002, astro-ph/0202228.

[19]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[20]  J. R. Bond,et al.  Spectrum and Anisotropy of the Cosmic Infrared Background , 1986 .

[21]  P. A. R. Ade,et al.  MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4317.

[22]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[23]  I. Smail,et al.  SHARC-2 350 μm Observations of Distant Submillimeter-selected Galaxies , 2006, The Astrophysical Journal.

[24]  Astrophysics,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 SPECTRAL ENERGY DISTRIBUTION OF RADIO SOURCES IN NEARBY CLUSTERS OF GALAXIES: IMPLICATIONS FOR SUNYAEV-ZEL’DOVICH EFFECT SURVEYS , 2022 .

[25]  Lloyd Knox,et al.  Correlations in the Far-Infrared Background , 1999, astro-ph/9906399.

[26]  O. Krause,et al.  Far-infrared Source Counts at 70 and 160 Microns in Spitzer Deep Surveys , 2004, astro-ph/0406021.

[27]  Roberto Ricci,et al.  Predictions for high-frequency radio surveys of extragalactic sources , 2005 .

[28]  XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars , 2004, astro-ph/0405575.

[29]  Jeremiah P. Ostriker,et al.  SIMULATIONS OF THE MICROWAVE SKY , 2009, 0908.0540.

[30]  G. Lagache,et al.  Simulations of the cosmic infrared and submillimeter background for future large surveys I. Presentation and first application to Herschel/SPIRE and Planck/HFI , 2008, 0801.4299.

[31]  L. Moscardini,et al.  Theoretical predictions on the clustering of SCUBA galaxies and implications for small-scale fluctuations at submillimetre wavelengths , 2001, astro-ph/0102464.

[32]  B. Grossan,et al.  Power spectrum analysis of far-IR background fluctuations in 160 μm maps from the multiband imaging photometer for Spitzer , 2007 .

[33]  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[34]  de T. Jong,et al.  The Infrared Astronomical Satellite (IRAS) mission , 1984 .

[35]  Jean-Paul Kneib,et al.  Deep Counts of Submillimeter Galaxies , 1998, astro-ph/9812412.

[36]  J. Condon,et al.  Confusion and flux-density error distributions , 1974 .

[37]  U. Seljak,et al.  Sunyaev-Zeldovich effect from hydrodynamical simulations: Maps and low order statistics , 2000, astro-ph/0001120.

[38]  G. Rieke,et al.  IR Observations of MS 1054–03: Star Formation and Its Evolution in Rich Galaxy Clusters , 2007, 0704.0953.

[39]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[40]  L. Knox,et al.  Small-Scale Cosmic Microwave Background Temperature and Polarization Anisotropies Due to Patchy Reionization , 2003 .

[41]  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 16/07/00 THE FAR-INFRARED BACKGROUND CORRELATION WITH CMB LENSING , 2002 .

[42]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[43]  Loretta Dunne,et al.  The SCUBA Local Universe Galaxy Survey – II. 450‐μm data: evidence for cold dust in bright IRAS galaxies , 2001, astro-ph/0106362.

[44]  H. Dole,et al.  Modelling infrared galaxy evolution using a phenomenological approach , 2002, astro-ph/0209115.

[45]  J. Kneib,et al.  Probing the submillimetre number counts at f850 μm < 2 mJy , 2007, 0712.1904.

[46]  Guilaine Lagache,et al.  DUSTY INFRARED GALAXIES: Sources of the Cosmic Infrared Background , 2005, astro-ph/0507298.

[47]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[48]  Princeton University,et al.  Probing Early Structure Formation with Far-Infrared Background Correlations , 2000, astro-ph/0009151.

[49]  Unbiased estimation of an angular power spectrum , 2004, astro-ph/0402428.

[50]  G. Rieke,et al.  POLYCYCLIC AROMATIC HYDROCARBON CONTRIBUTION TO THE INFRARED OUTPUT ENERGY OF THE UNIVERSE AT z 2 , 2004, astro-ph/0406016.

[51]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[52]  Amber D. Miller,et al.  A MEASUREMENT OF ARCMINUTE ANISOTROPY IN THE COSMIC MICROWAVE BACKGROUND WITH THE SUNYAEV–ZEL’DOVICH ARRAY , 2009, 0901.4342.

[53]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[54]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[55]  N. Boudet,et al.  Far-infrared to millimeter astrophysical dust emission. I. A model based on physical properties of a , 2007 .

[56]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[57]  J. Bond,et al.  Cosmic backgrounds from primeval dust , 1991 .

[58]  The Influence of Nonuniform Reionization on the CMB , 2005, astro-ph/0503166.