18S rRNA hyper-elongation and the phylogeny of Euhemiptera (Insecta: Hemiptera).
暂无分享,去创建一个
[1] Qiang Xie,et al. The Bayesian phylogenetic analysis of the 18S rRNA sequences from the main lineages of Trichophora (Insecta: Heteroptera: Pentatomomorpha). , 2005, Molecular phylogenetics and evolution.
[2] S. B. Needleman,et al. A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.
[3] A. Meyer,et al. Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas , 1996, Journal of Molecular Evolution.
[4] R. Gutell,et al. Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures. , 2000, Molecular phylogenetics and evolution.
[5] W. Wheeler,et al. Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets , 1993 .
[6] M. Whiting,et al. Mantophasmatodea and phylogeny of the lower neopterous insects , 2005 .
[7] Christina Waldsich,et al. RNA folding in vivo. , 2002, Current opinion in structural biology.
[8] N. B. Petrov,et al. Secondary structure of some elements of 18S rRNA suggests that strongylid and a part of rhabditid nematodes are monophyletic , 1998, FEBS letters.
[9] F. Sperling,et al. The current state of insect molecular systematics: a thriving Tower of Babel. , 2000, Annual review of entomology.
[10] Yves Van de Peer,et al. Compilation of small ribosomal subunit RNA structures , 1993, Nucleic Acids Res..
[11] R. Gutell,et al. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. , 1993, Nucleic acids research.
[12] John P. Huelsenbeck,et al. MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..
[13] L. Kimsey,et al. 18S rDNA sequences and the holometabolous insects. , 1992, Molecular phylogenetics and evolution.
[14] T. Henry. Phylogenetic Analysis of Family Groups within the Infraorder Pentatomomorpha (Hemiptera: Heteroptera), with Emphasis on the Lygaeoidea , 1997 .
[15] W. Brown,et al. Rates and patterns of base change in the small subunit ribosomal RNA gene. , 1993, Genetics.
[16] N. Moran,et al. Molecular phylogeny of the homoptera: a paraphyletic taxon , 1995, Journal of Molecular Evolution.
[17] W. Wheeler. OPTIMIZATION ALIGNMENT: THE END OF MULTIPLE SEQUENCE ALIGNMENT IN PHYLOGENETICS? , 1996 .
[18] J. Martín,et al. Performance of 18S rDNA helix E23 for phylogenetic relationships within and between the Rotifera-Acanthocephala clades. , 2000, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.
[19] Yan P. Yuan,et al. HGBASE: a database of SNPs and other variations in and around human genes , 2000, Nucleic Acids Res..
[20] James B. Munro,et al. A secondary structural model of the 28S rRNA expansion segments D2 and D3 for Chalcidoid wasps (Hymenoptera: Chalcidoidea). , 2005, Molecular biology and evolution.
[21] David Posada,et al. MODELTEST: testing the model of DNA substitution , 1998, Bioinform..
[22] D. Swofford. PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .
[23] W C Wheeler,et al. Elision: a method for accommodating multiple molecular sequence alignments with alignment-ambiguous sites. , 1995, Molecular phylogenetics and evolution.
[24] R. Gutell,et al. Comparative anatomy of 16-S-like ribosomal RNA. , 1985, Progress in nucleic acid research and molecular biology.
[25] Y. Roisin,et al. Generic Revision of the Smaller Nasute Termites of the Greater Antilles (Isoptera, Termitidae, Nasutitermitinae) , 1996 .
[26] E. Zimmer,et al. Systematics of holometabolous insect orders based on 18S ribosomal RNA. , 1993, Molecular phylogenetics and evolution.
[27] Z. Yang. On the best evolutionary rate for phylogenetic analysis. , 1998, Systematic biology.
[28] D Gautheret,et al. Predicting U-turns in ribosomal RNA with comparative sequence analysis. , 2000, Journal of molecular biology.
[29] R. Gutell,et al. The accuracy of ribosomal RNA comparative structure models. , 2002, Current opinion in structural biology.
[30] M J Telford,et al. The phylogenetic affinities of the chaetognaths: a molecular analysis. , 1993, Molecular biology and evolution.
[31] R. Jenner. The scientific status of metazoan cladistics: why current research practice must change , 2004 .
[32] James M. Carpenter,et al. The Phylogeny of the Extant Hexapod Orders , 2001, Cladistics : the international journal of the Willi Hennig Society.
[33] D. Penny,et al. Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. , 1996, Molecular biology and evolution.
[34] R. de Wachter,et al. 18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. , 1995, Molecular biology and evolution.
[35] J. Thompson,et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.
[36] B. Campbell,et al. Evolutionary origin of whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) inferred from 18S rDNA sequences , 1994, Insect molecular biology.
[37] J. Huelsenbeck,et al. Signal, noise, and reliability in molecular phylogenetic analyses. , 1992, The Journal of heredity.
[38] George E. Fox,et al. Database of non-canonical base pairs found in known RNA structures , 2000, Nucleic Acids Res..
[39] D. Turner,et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[40] John M. Hancock,et al. Modelling the secondary structures of slippage-prone hypervariable RNA regions: the example of the tiger beetle 18S rRNA variable region V4. , 1998, Nucleic acids research.
[41] W C Wheeler,et al. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. , 1997, Systematic biology.
[42] J. T. Sorensen,et al. Paraphyly of Homoptera and Auchenorrhyncha inferred from 18S rDNA nucleotide sequences , 1995 .
[43] V. Ramakrishnan,et al. Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution , 1999, Nature.
[44] Randall T. Schuh,et al. True bugs of the world (Hemiptera:Heteroptera) : classification and natural history , 1995 .
[45] J. Cryan. Molecular phylogeny of Cicadomorpha (Insecta: Hemiptera: Cicadoidea, Cercopoidea and Membracoidea): adding evidence to the controversy , 2005 .
[46] K. Kjer,et al. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. , 1995, Molecular phylogenetics and evolution.
[47] A. Bezděk,et al. Phylogeny of the Metazoa Based on Morphological and 18S Ribosomal DNA Evidence , 1998, Cladistics : the international journal of the Willi Hennig Society.
[48] T. Bourgoin,et al. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). , 2000, Molecular phylogenetics and evolution.
[49] U. Hwang,et al. Evolution of Hypervariable Regions, V4 and V7, of Insect 18S rRNA and Their Phylogenetic Implications , 2000, Zoological science.
[50] K. Kjer,et al. Aligned 18S and insect phylogeny. , 2004, Systematic biology.
[51] R. Kristensen,et al. Relations of the new phylum Cycliophora , 1998, Nature.
[52] R. Garrett,et al. Ribosomal Mechanics, Antibiotics, and GTP Hydrolysis , 1999, Cell.
[53] F. Zimmermann,et al. 18S Ribosomal RNA genes of insects : primary structure of the genes and molecular phylogeny of the Holometabola , 1996 .
[54] C. Pleij,et al. Selective Pressures on RNA Hairpins In Vivo and In Vitro , 2002, Journal of Molecular Evolution.
[55] Michael P. Cummings,et al. PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .
[56] R. Schuh,et al. Evolutionary trends in Heteroptera. Part II Mouthpart-structures and feeding strategies , 1979 .