RepetDB: a unified resource for transposable element references
暂无分享,去创建一个
H. Quesneville | Florian Maumus | C. Pommier | N. Choisne | M. Alaux | A. Adam-Blondon | I. Luyten | J. Amselem | T. Letellier | V. Jamilloux | G. Cornut | Françoise Alfama-Depauw
[1] D. Schwartz,et al. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters , 2017, BMC Genomics.
[2] F. Arnaud,et al. From core referencing to data re-use: two French national initiatives to reinforce paleodata stewardship (National Cyber Core Repository and LTER France Retro-Observatory) , 2017 .
[3] J. McPherson,et al. Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.
[4] Suzanna E Lewis,et al. JBrowse: a dynamic web platform for genome visualization and analysis , 2016, Genome Biology.
[5] Erik Schultes,et al. The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.
[6] Anil S. Thanki,et al. transPLANT Resources for Triticeae Genomic Data , 2016, The plant genome.
[7] Robert D. Finn,et al. The Dfam database of repetitive DNA families , 2015, Nucleic Acids Res..
[8] O. Kohany,et al. Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.
[9] H. Quesneville,et al. Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes , 2015, BMC Genomics.
[10] C. Thermes,et al. Ten years of next-generation sequencing technology. , 2014, Trends in genetics : TIG.
[11] H. Quesneville,et al. PASTEC: An Automatic Transposable Element Classification Tool , 2014, PloS one.
[12] Sergio Contrino,et al. InterMine: extensive web services for modern biology , 2014, Nucleic Acids Res..
[13] Yu Zhang,et al. P-MITE: a database for plant miniature inverted-repeat transposable elements , 2013, Nucleic Acids Res..
[14] H. Quesneville,et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph , 2013, Nature Genetics.
[15] Hadi Quesneville,et al. GnpIS: an information system to integrate genetic and genomic data from plants and fungi , 2013, Database J. Biol. Databases Curation.
[16] Nikita S. Vassetzky,et al. SINEBase: a database and tool for SINE analysis , 2012, Nucleic Acids Res..
[17] Thomas Nussbaumer,et al. MIPS PlantsDB: a database framework for comparative plant genome research , 2012, Nucleic Acids Res..
[18] Sergio Contrino,et al. InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data , 2012, Bioinform..
[19] Damon Lisch,et al. How important are transposons for plant evolution? , 2012, Nature Reviews Genetics.
[20] M. Platzer,et al. A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.sp. tritici genome , 2011, Functional & Integrative Genomics.
[21] B. Gaut,et al. Genome Size and Transposable Element Content as Determined by High-Throughput Sequencing in Maize and Zea luxurians , 2011, Genome biology and evolution.
[22] T. Flutre,et al. Considering Transposable Element Diversification in De Novo Annotation Approaches , 2011, PloS one.
[23] José M. Sempere,et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0 , 2010, Nucleic Acids Res..
[24] Hikmet Budak,et al. Megabase Level Sequencing Reveals Contrasted Organization and Evolution Patterns of the Wheat Gene and Transposable Element Spaces[W] , 2010, Plant Cell.
[25] Ahsan Huda,et al. Analysis of transposable element sequences using CENSOR and RepeatMasker. , 2009, Methods in molecular biology.
[26] E. Birney,et al. Pfam: the protein families database , 2013, Nucleic Acids Res..
[27] J. Bennetzen,et al. A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.
[28] David C. Nickle,et al. ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user's datasets , 2007, Bioinform..
[29] Zhao Xu,et al. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..
[30] R. Martienssen,et al. Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.
[31] J. Jurka,et al. Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.
[32] Casey M. Bergman,et al. Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..
[33] Eugene W. Myers,et al. PILER: identification and classification of genomic repeats , 2005, ISMB.
[34] P. Bennett. Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. , 2004, Methods in molecular biology.
[35] C. Robin Buell,et al. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants , 2004, Nucleic Acids Res..
[36] H. Quesneville,et al. Detection of New Transposable Element Families in Drosophila melanogaster and Anopheles gambiae Genomes , 2003, Journal of Molecular Evolution.
[37] S. Eddy,et al. Automated de novo identification of repeat sequence families in sequenced genomes. , 2002, Genome research.
[38] X. Huang,et al. On global sequence alignment , 1994, Comput. Appl. Biosci..