Unravelling the role of inelastic tunneling into pristine and defected graphene

We present a first principles method for calculating the inelastic electron tunneling spectroscopy (IETS) on gated graphene. We reproduce experiments on pristine graphene and point out the importance of including several phonon modes to correctly estimate the local doping from IETS. We demonstrate how the IETS of typical imperfections in graphene can yield characteristic fingerprints revealing e.g. adsorbate species or local buckling. Our results show how care is needed when interpreting STM images of defects due to suppression of the elastic tunneling on graphene.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[4]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[5]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[6]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[7]  Antti-Pekka Jauho,et al.  Inelastic transport theory from first principles: Methodology and application to nanoscale devices , 2006, cond-mat/0611562.

[8]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[9]  M. Krisch,et al.  Phonon dispersion of graphite by inelastic x-ray scattering , 2007, 0705.2418.

[10]  T. Wehling,et al.  Phonon-mediated tunneling into graphene. , 2008, Physical review letters.

[11]  Feng Wang,et al.  Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene , 2008 .

[12]  M. Katsnelson,et al.  Impurities on graphene: Midgap states and migration barriers , 2009, 0903.2006.

[13]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[14]  Enge Wang,et al.  Stone-Wales defects in graphene and other planar sp(2)-bonded materials , 2009 .

[15]  Lin-wang Wang,et al.  Plane-wave based Electron Tunneling through Au nanojunctions , 2010 .

[16]  S. Louie,et al.  Observation of carrier-density-dependent many-body effects in graphene via tunneling spectroscopy. , 2010, Physical review letters.

[17]  Yang Wang,et al.  Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. , 2011, Nano letters.

[18]  M. Knupfer,et al.  Probing local hydrogen impurities in quasi-free-standing graphene. , 2012, ACS nano.

[19]  J. Heath,et al.  Visualizing local doping effects of individual water clusters on gold(111)-supported graphene. , 2012, Nano letters.

[20]  Graphene antidot lattice waveguides , 2012, 1211.4322.

[21]  Cherno Jaye,et al.  Local atomic and electronic structure of boron chemical doping in monolayer graphene. , 2013, Nano letters.

[22]  G. Flynn,et al.  Substrate level control of the local doping in graphene. , 2013, Nano letters (Print).

[23]  Efficient calculation of inelastic vibration signals in electron transport: Beyond the wide-band approximation , 2013, 1312.7625.