Hybrid Initialization in the Process of Evolutionary Learning

Population-based algorithms are an interesting tool for solving optimization problems. Their performance depends not only on their specification but also on methods used for initialization of initial population. In this paper a new hybridization approach of initialization methods is proposed. It is based on classification of initialization methods that allow various combination of the methods from each category. To test the proposed approach typical problems related to population-based algorithms were used.

[1]  Piotr Duda,et al.  On Pre-processing Algorithms for Data Stream , 2012, ICAISC.

[2]  Piotr Duda,et al.  On Resources Optimization in Fuzzy Clustering of Data Streams , 2012, ICAISC.

[3]  Xiuju Fu,et al.  Improvement of the Multiple-View Learning Based on the Self-Organizing Maps , 2015, ICAISC.

[4]  Piotr Dziwiñski,et al.  A New Approach for Using the Fuzzy Decision Trees for the Detection of the Significant Operating Points in the Nonlinear Modeling , 2016, ICAISC.

[5]  Rafal Grycuk,et al.  Content-Based Image Indexing by Data Clustering and Inverse Document Frequency , 2014, BDAS.

[6]  Elisabeth Rakus-Andersson,et al.  An Idea of the Dynamic Signature Verification Based on a Hybrid Approach , 2016, ICAISC.

[7]  Masaki Murata,et al.  Order Estimation of Japanese Paragraphs by Supervised Machine Learning and Various Textual Features , 2015, J. Artif. Intell. Soft Comput. Res..

[8]  Rafal Scherer,et al.  Designing Boosting Ensemble of Relational Fuzzy Systems , 2010, Int. J. Neural Syst..

[9]  Marcin Zalasinski New Algorithm for On-line Signature Verification Using Characteristic Global Features , 2015, ISAT.

[10]  Michael B. Giles,et al.  Parallelization Techniques for Random Number Generators , 2011 .

[11]  Kaoru Hirota,et al.  Common Driving Notification Protocol Based on Classified Driving Behavior for Cooperation Intelligent Autonomous Vehicle Using Vehicular Ad-Hoc Network Technology , 2015, J. Artif. Intell. Soft Comput. Res..

[12]  Kandarpa Kumar Sarma,et al.  A Class of Neuro-Computational Methods for Assamese Fricative Classification , 2015, J. Artif. Intell. Soft Comput. Res..

[13]  Krystian Lapa,et al.  A New Method for Generating of Fuzzy Rules for the Nonlinear Modelling Based on Semantic Genetic Programming , 2016, ICAISC.

[14]  Marcin Zalasinski,et al.  New Algorithm for On-line Signature Verification Using Characteristic Hybrid Partitions , 2015, ISAT.

[15]  Shahryar Rahnamayan,et al.  Toward effective initialization for large-scale search spaces , 2009 .

[16]  Xiaodong Li,et al.  Effects of population initialization on differential evolution for large scale optimization , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[17]  Piotr Dziwiñski,et al.  A New Method of the Intelligent Modeling of the Nonlinear Dynamic Objects with Fuzzy Detection of the Operating Points , 2016, ICAISC.

[18]  Ajith Abraham,et al.  Particle Swarm Optimization: Performance Tuning and Empirical Analysis , 2009, Foundations of Computational Intelligence.

[19]  Jian Cheng,et al.  Computational Investigation of Low-Discrepancy Sequences in Simulation Algorithms for Bayesian Networks , 2000, UAI.

[20]  Millie Pant,et al.  Differential Evolution using Quadratic Interpolation for Initializing the Population , 2009, 2009 IEEE International Advance Computing Conference.

[21]  A. B. Orue,et al.  Trifork,aNew Pseudorandom Number Generator Based on Lagged FibonacciMaps , 2010 .

[22]  I. D. Hill,et al.  Correction: Algorithm AS 183: An Efficient and Portable Pseudo-Random Number Generator , 1982 .

[23]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[24]  Piotr Duda,et al.  How to adjust an ensemble size in stream data mining? , 2017, Inf. Sci..

[25]  Bo Jiang,et al.  Adaptive Randomness: A New Population Initialization Method , 2014 .

[26]  Rafal Scherer,et al.  Connectionist Fuzzy Relational Systems , 2005, Computational Intelligence for Modelling and Prediction.

[27]  J. Burkardt,et al.  LATINIZED, IMPROVED LHS, AND CVT POINT SETS IN HYPERCUBES , 2007 .

[28]  Hector D. Patiño,et al.  Energy Associated Tuning Method for Short-Term Series Forecasting by Complete and Incomplete Datasets , 2017, J. Artif. Intell. Soft Comput. Res..

[29]  Guido Bologna,et al.  Recursive-Rule Extraction Algorithm With J48graft And Applications To Generating Credit Scores , 2016, J. Artif. Intell. Soft Comput. Res..

[30]  L. Rutkowski,et al.  Nonparametric fitting of multivariate functions , 1986 .

[31]  Marcin Zalasinski,et al.  Novel Algorithm for the On-Line Signature Verification Using Selected Discretization Points Groups , 2013, ICAISC.

[32]  L. Rutkowski,et al.  Flexible weighted neuro-fuzzy systems , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[33]  Rafal Scherer,et al.  Multiple Fuzzy Classification Systems , 2012, Studies in Fuzziness and Soft Computing.

[34]  Robert Nowicki,et al.  On design of flexible neuro-fuzzy systems for nonlinear modelling , 2013, Int. J. Gen. Syst..

[35]  Tomohiro Yoshikawa,et al.  An Emotional Expression Model for Educational-Support Robots , 2015, J. Artif. Intell. Soft Comput. Res..

[36]  Piotr Duda,et al.  A New Method for Data Stream Mining Based on the Misclassification Error , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[37]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[38]  Piotr Duda,et al.  Decision Trees for Mining Data Streams Based on the Gaussian Approximation , 2014, IEEE Transactions on Knowledge and Data Engineering.

[39]  Ajith Abraham,et al.  Unconventional initialization methods for differential evolution , 2013, Appl. Math. Comput..

[40]  Vladimir Nikulin,et al.  Prediction of the Shoppers Loyalty with Aggregated Data Streams , 2016, J. Artif. Intell. Soft Comput. Res..

[41]  Yoichi Hayashi,et al.  A New Approach to the Dynamic Signature Verification Aimed at Minimizing the Number of Global Features , 2016, ICAISC.

[42]  Krystian Lapa,et al.  A New Approach to Designing Interpretable Models of Dynamic Systems , 2013, ICAISC.

[43]  Pierre L'Ecuyer,et al.  On the xorshift random number generators , 2005, TOMC.

[44]  Kiyotaka Izumi,et al.  Gain Design of Quasi-Continuous Exponential Stabilizing Controller for a Nonholonomic Mobile Robot , 2016, J. Artif. Intell. Soft Comput. Res..

[45]  Kaisa Miettinen,et al.  On initial populations of a genetic algorithm for continuous optimization problems , 2007, J. Glob. Optim..

[46]  Lukasz Bartczuk,et al.  A New Method for Generating Nonlinear Correction Models of Dynamic Objects Based on Semantic Genetic Programming , 2016, ICAISC.

[47]  Marcin Korytkowski,et al.  Novel Image Descriptor Based on Color Spatial Distribution , 2016, ICAISC.

[48]  A. Kai Qin,et al.  A review of population initialization techniques for evolutionary algorithms , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[49]  Leszek Rutkowski,et al.  A new algorithm for identity verification based on the analysis of a handwritten dynamic signature , 2016, Appl. Soft Comput..

[50]  Piotr Duda,et al.  The CART decision tree for mining data streams , 2014, Inf. Sci..

[51]  I. D. Hill,et al.  Generating good pseudo-random numbers , 2006, Comput. Stat. Data Anal..

[52]  Rafal Scherer,et al.  Neuro-Fuzzy Relational Systems , 2002, FSKD.

[53]  L. Rutkowski,et al.  Flexible Takagi-Sugeno fuzzy systems , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[54]  Piotr Dziwiñski,et al.  A New Approach to Nonlinear Modeling Based on Significant Operating Points Detection , 2015, ICAISC.

[55]  Srinivas Aluru,et al.  A random number generator for parallel computers , 1992, Parallel Comput..

[56]  Piotr Duda,et al.  Decision Trees for Mining Data Streams Based on the McDiarmid's Bound , 2013, IEEE Transactions on Knowledge and Data Engineering.

[57]  Leszek Rutkowski,et al.  Neuro-fuzzy systems derived from quasi-triangular norms , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[58]  Yoichi Hayashi,et al.  On the Strong Convergence of the Orthogonal Series-Type Kernel Regression Neural Networks in a Non-stationary Environment , 2012, ICAISC.

[59]  Marcin Korytkowski,et al.  Fast image classification by boosting fuzzy classifiers , 2016, Inf. Sci..

[60]  Krzysztof Cpałka,et al.  A new method of on-line signature verification using a flexible fuzzy one-class classifier , 2011 .

[61]  Shahryar Rahnamayan,et al.  A novel population initialization method for accelerating evolutionary algorithms , 2007, Comput. Math. Appl..

[62]  Malabika Basu,et al.  Quasi-oppositional differential evolution for optimal reactive power dispatch , 2016 .

[63]  Tairen Sun,et al.  Leader-Based Consensus of Heterogeneous Nonlinear Multiagent Systems , 2014 .

[64]  Piraveenan Mahendra,et al.  Evolutionary Stable Strategies In Networked Games: The Influence Of Topology , 2015, J. Artif. Intell. Soft Comput. Res..

[65]  Leszek Rutlowski Sequential pattern recognition procedures derived from multiple Fourier series , 1988 .

[66]  I. D. Hill,et al.  An Efficient and Portable Pseudo‐Random Number Generator , 1982 .

[67]  Thomas Villmann,et al.  Can Learning Vector Quantization be an Alternative to SVM and Deep Learning? - Recent Trends and Advanced Variants of Learning Vector Quantization for Classification Learning , 2017, J. Artif. Intell. Soft Comput. Res..

[68]  Jerzy Jelonkiewicz,et al.  Genetic Algorithm for Observer Parameters Tuning in Sensorless Induction Motor Drive , 2003 .

[69]  Marcin Korytkowski,et al.  Application of Neural Networks in Assessing Changes around Implant after Total Hip Arthroplasty , 2012, ICAISC.

[70]  Krzysztof Cpalka,et al.  Design of Interpretable Fuzzy Systems , 2017, Studies in Computational Intelligence.

[71]  Krystian Lapa,et al.  A new approach to design of control systems using genetic programming , 2015, Inf. Technol. Control..