Error Bounds for Linear Matrix Inequalities

For iterative sequences that converge to the solution set of a linear matrix inequality, we show that the distance of the iterates to the solution set is at most \( O(\epsilon ^{2^{-d}}) \). The nonnegative integer d is the so-called degree of singularity of the linear matrix inequality, and $\epsilon $ denotes the amount of constraint violation in the iterate. For infeasible linear matrix inequalities, we show that the minimal norm of $\epsilon $-approximate primal solutions is at least \( 1/O(\epsilon ^{1/(2^{d}-1)}) \), and the minimal norm of $\epsilon $-approximate Farkas-type dual solutions is at most \( O(1/ \epsilon ^{2^{d}-1}) \). As an application of these error bounds, we show that for any bounded sequence of $\epsilon $-approximate solutions to a semidefinite programming problem, the distance to the optimal solution set is at most \( O(\epsilon ^{2^{-k}}) \), where k is the degree of singularity of the optimal solution set.

[1]  Alexander Shapiro,et al.  Optimization Problems with Perturbations: A Guided Tour , 1998, SIAM Rev..

[2]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[3]  E. de Klerk,et al.  Interior Point Methods for Semidefinite Programming , 1997 .

[4]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[5]  Wu Li,et al.  Asymptotic constraint qualifications and global error bounds for convex inequalities , 1999, Math. Program..

[6]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[7]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[8]  Hui Hu,et al.  Computable Error Bounds for Semidefinite Programming , 1999, J. Glob. Optim..

[9]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[10]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[11]  G. P. Barker,et al.  Cones of diagonally dominant matrices , 1975 .

[12]  G. Abor Pataki On the Rank of Extreme Matrices in Semideenite Programs and the Multiplicity of Optimal Eigenvalues , 1997 .

[13]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[14]  Kenneth O. Kortanek,et al.  Perfect duality in semi–infinite and semidefinite programming , 2001, Math. Program..

[15]  Zhi-Quan Luo,et al.  Error bounds for analytic systems and their applications , 1994, Math. Program..

[16]  D. Goldfarb,et al.  On parametric semidefinite programming , 1999 .

[17]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[18]  Shuzhong Zhang,et al.  On sensitivity of central solutions in semidefinite programming , 2001, Math. Program..

[19]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[20]  Kim-Chuan Toh,et al.  B-355 a Note on the Calculation of Step-lengths in Interior-point Methods for Semideenite Programming , 1999 .

[21]  A. Lewis Eigenvalue-constrained faces☆ , 1998 .

[22]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[23]  R. Vanderbei,et al.  An Interior-point Method for Semideenite Programming an Interior-point Method for Semideenite Programming , 1994 .

[24]  Christoph Helmberg,et al.  Fixing Variables in Semidefinite Relaxations , 1997, SIAM J. Matrix Anal. Appl..

[25]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[26]  J. Pang,et al.  Global error bounds for convex quadratic inequality systems , 1994 .

[27]  Z. Luo,et al.  Error Bounds for Quadratic Systems , 1999 .

[28]  Gábor Pataki,et al.  On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues , 1998, Math. Oper. Res..

[29]  Shuzhong Zhang,et al.  Duality Results for Conic Convex Programming , 1997 .

[30]  Alexander Shapiro,et al.  First and second order analysis of nonlinear semidefinite programs , 1997, Math. Program..

[31]  Shuzhong Zhang,et al.  Duality and Self-Duality for Conic Convex Programming , 1996 .

[32]  Zhi-Quan Luo,et al.  Superlinear Convergence of a Symmetric Primal-Dual Path Following Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..

[33]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[34]  J. Borwein,et al.  Regularizing the Abstract Convex Program , 1981 .

[35]  Zhi-Quan Luo,et al.  Extension of Hoffman's Error Bound to Polynomial Systems , 1994, SIAM J. Optim..

[36]  Henry Wolkowicz,et al.  Strong Duality for Semidefinite Programming , 1997, SIAM J. Optim..