Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the frequency fingerprints of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using wave-function fingerprints of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the frequency gradients in conventional MRI and to reaching the angstrom-scale resolution.

[1]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[2]  M. Lukin,et al.  NMR technique for determining the depth of shallow nitrogen-vacancy centers in diamond , 2015, 1508.04191.

[3]  Jiangfeng Du,et al.  Towards chemical structure resolution with nanoscale nuclear magnetic resonance spectroscopy , 2015, 1506.05882.

[4]  J. Morton,et al.  Classical nature of nuclear spin noise near clock transitions of Bi donors in silicon , 2015, 1505.01604.

[5]  M. Plenio,et al.  Filter design for hybrid spin gates , 2015, 1504.03575.

[6]  Hongbin Sun,et al.  Single-protein spin resonance spectroscopy under ambient conditions , 2015, Science.

[7]  M. Markham,et al.  Spectroscopy of surface-induced noise using shallow spins in diamond. , 2014, Physical review letters.

[8]  D. Rugar,et al.  Spurious harmonic response of multipulse quantum sensing sequences , 2014, 1412.5768.

[9]  N. Chisholm,et al.  Magnetic resonance detection of individual proton spins using quantum reporters. , 2014, Physical review letters.

[10]  Wayne Witzel,et al.  Converting a real quantum spin bath to an effective classical noise acting on a central spin , 2014 .

[11]  J. Meijer,et al.  Nuclear magnetic resonance spectroscopy with single spin sensitivity , 2014, Nature Communications.

[12]  Paola Cappellaro,et al.  Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond , 2014, 1407.3134.

[13]  S. Shikata,et al.  University of Groningen Investigation of Surface Magnetic Noise by Shallow Spins in Diamond , 2014 .

[14]  D. Awschalom,et al.  Probing surface noise with depth-calibrated spins in diamond. , 2014, Physical review letters.

[15]  Jiangfeng Du,et al.  Sensing and atomic-scale structure analysis of single nuclear-spin clusters in diamond , 2013, Nature Physics.

[16]  M. Plenio,et al.  Detecting and polarizing nuclear spins with double resonance on a single electron spin. , 2013, Physical review letters.

[17]  F. Dolde,et al.  High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond , 2013, Nature Communications.

[18]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[19]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[20]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[21]  M. D. Lukin,et al.  Nanoscale magnetic imaging of a single electron spin under ambient conditions , 2012, Nature Physics.

[22]  M. Plenio,et al.  Diamond-based single-molecule magnetic resonance spectroscopy , 2011, 1112.5502.

[23]  D. Awschalom,et al.  Engineering shallow spins in diamond with nitrogen delta-doping , 2012, 1207.2784.

[24]  T. Taminiau,et al.  Detection and control of individual nuclear spins using a weakly coupled electron spin. , 2012, Physical review letters.

[25]  Jiangfeng Du,et al.  Tuning a spin bath through the quantum-classical transition. , 2012, Physical review letters.

[26]  M. Markham,et al.  Sensing single remote nuclear spins. , 2012, Nature nanotechnology.

[27]  S. Bennett,et al.  Sensing distant nuclear spins with a single electron spin. , 2012, Physical review letters.

[28]  D. Budker,et al.  Longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond , 2011, Physical review letters.

[29]  Jiangfeng Du,et al.  Observation of an anomalous decoherence effect in a quantum bath at room temperature , 2011, Nature communications.

[30]  N. Zhao,et al.  Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. , 2010, Nature nanotechnology.

[31]  M. Lukin,et al.  Quantum control of proximal spins using nanoscale magnetic resonance imaging , 2011, 1103.0546.

[32]  R. Hanson,et al.  Single-spin magnetometry with multipulse sensing sequences. , 2010, Physical review letters.

[33]  F. Reinhard,et al.  Increasing the coherence time of single electron spins in diamond by high temperature annealing , 2010, 1012.0216.

[34]  L. Hollenberg,et al.  Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[35]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[36]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[37]  Ren-Bao Liu,et al.  Quantum many-body theory of qubit decoherence in a finite-size spin bath , 2008, 0806.0098.

[38]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[39]  Ronald Hanson,et al.  Quenching spin decoherence in diamond through spin bath polarization. , 2008, Physical review letters.

[40]  S. Das Sarma,et al.  How to Enhance Dephasing Time in Superconducting Qubits , 2007, 0712.2225.

[41]  P. Hemmer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[42]  S. Sarma,et al.  Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment , 2005, cond-mat/0512323.

[43]  Ren-Bao Liu,et al.  Theory of electron spin decoherence by interacting nuclear spins in a quantum dot , 2005, cond-mat/0508441.

[44]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[45]  James E. Butler,et al.  Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition , 2003 .

[46]  S. Sarma,et al.  Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots , 2002, cond-mat/0211567.

[47]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[48]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[49]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[50]  M Laval-Jeantet,et al.  [Nuclear magnetic resonance imaging]. , 1984, La Revue du praticien.

[51]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[52]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .