An Universal Multi-Additive Strategy to Enhance Efficiency and Stability in Inverted Perovskite Solar Cells

[1]  A. Di Carlo,et al.  Holistic Approach toward a Damage-Less Sputtered Indium Tin Oxide Barrier Layer for High-Stability Inverted Perovskite Solar Cells and Modules , 2022, ACS applied materials & interfaces.

[2]  Yang Liu,et al.  Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules , 2022, Nature Nanotechnology.

[3]  Assaf Y Anderson,et al.  An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles , 2021, Nature Energy.

[4]  F. Brunetti,et al.  Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm2 Active Area , 2021, ACS applied materials & interfaces.

[5]  E. Kymakis,et al.  Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. , 2021, ACS applied materials & interfaces.

[6]  R. Schmager,et al.  Energy Yield Advantages of Three-Terminal Perovskite-Silicon Tandem Photovoltaics , 2020 .

[7]  L. Cinà,et al.  Easy strategy to enhance thermal stability of planar PSCs by perovskite defect passivation and low-temperature carbon-based electrode. , 2020, ACS applied materials & interfaces.

[8]  T. Brown,et al.  Perovskite Photovoltaics on Roll-To-Roll Coated Ultra-thin Glass as Flexible High-Efficiency Indoor Power Generators , 2020 .

[9]  V. Zardetto,et al.  Bifacial Four-Terminal Perovskite/Silicon Tandem Solar Cells and Modules , 2020 .

[10]  A. Carlo,et al.  Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26% , 2020, Joule.

[11]  Zhenghong Lu,et al.  Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .

[12]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[13]  Yue Hu,et al.  A Review on Additives for Halide Perovskite Solar Cells , 2019, Advanced Energy Materials.

[14]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[15]  Ian Marius Peters,et al.  Technology and Market Perspective for Indoor Photovoltaic Cells , 2019, Joule.

[16]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[17]  Bo Li,et al.  Significant Stability Enhancement of Perovskite Solar Cells by Facile Adhesive Encapsulation , 2018, The Journal of Physical Chemistry C.

[18]  R. Friend,et al.  Potassium- and Rubidium-Passivated Alloyed Perovskite Films: Optoelectronic Properties and Moisture Stability , 2018, ACS energy letters.

[19]  D. Cahen,et al.  Understanding how excess lead iodide precursor improves halide perovskite solar cell performance , 2018, Nature Communications.

[20]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[21]  Kai Zhu,et al.  Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization , 2018 .

[22]  F. Giordano,et al.  Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency , 2016, Advanced Energy Materials.

[23]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[24]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[25]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[26]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.