General Equilibrium, Electricity Generation Technologies and the Cost of Carbon Abatement

Electricity generation is a major contributor to carbon dioxide emissions, and a key determinant of abatement costs. Ex-ante assessments of carbon policies mainly rely on either of two modeling paradigms: (i) partial equilibrium models of the electricity sector that use bottom-up engineering data on generation technology costs, and (ii) multisector general equilibrium models that represent economic activities with smooth top-down aggregate production functions. In this paper, we examine the structural assumptions of these numerical techniques using a suite of models sharing common technological features and calibrated to the same benchmark data. First, our analysis provides evidence that general equilibrium e ects of an economy-wide carbon policy are of first-order importance to assess abatement potentials and price changes in the electricity sector, suggesting that the parametrization of Marshallian demand in a partial equilibrium setting is problematic. Second, we find that top-down technology representations produce fuel substitution patterns that are inconsistent with bottom-up cost data, mainly because of di culties in capturing the temporal and discrete nature of electricity generation by means of aggregate substitution elasticities. Our analysis highlights the di culty to parametrize numerical models used for policy projections, and suggests that the integration of a bottom-up electricity sector model into a general equilibrium framework provides an attractive structural alternative for ex-ante policy modeling.

[1]  James Bushnell,et al.  Vertical Arrangements, Market Structure, and Competition an Analysis of Restructured U.S. Electricity Markets , 2007 .

[2]  Andreas Lange,et al.  Optimal Emission Pricing in the Presence of International Spillovers: Decomposing Leakage and Terms-of-Trade Motives , 2010 .

[3]  J. M. Griffin,et al.  Regional Differences in the Price-Elasticity of Demand For Energy , 2005 .

[4]  Christoph Böhringer,et al.  Integrated assessment of energy policies: Decomposing top-down and bottom-up , 2009 .

[5]  S. Robinson Macroeconomics, financial variables, and computable general equilibrium models , 1991 .

[6]  Gilbert E. Metcalf U.S. Energy Tax Policy: Index , 2010 .

[7]  Thomas F. Rutherford,et al.  Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax , 1999 .

[8]  Mark Jaccard,et al.  Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal , 2006 .

[9]  Alain Haurie,et al.  A Coupled Bottom-Up/Top-Down Model for GHG Abatement Scenarios in the Swiss Housing Sector , 2005 .

[10]  Sergey Paltsev,et al.  Distributional Implications of Alternative U.S. Greenhouse Gas Control Measures , 2010 .

[11]  R. Kannan,et al.  Hybrid modelling of long-term carbon reduction scenarios for the UK , 2008 .

[12]  Paul L. Joskow,et al.  Transmission policy in the United States , 2005 .

[13]  T. Rutherford,et al.  Regular Flexibility of Nested CES Functions , 1995 .

[14]  Alan S. Manne,et al.  MERGE. A model for evaluating regional and global effects of GHG reduction policies , 1995 .

[15]  James Bushnell,et al.  Vertical Arrangements, Market Structure, and Competition: An Analysis of Restructured U.S. Electricity Markets , 2005 .

[16]  L. Goulder,et al.  Impacts of Alternative Emissions Allowance Allocation Methods Under a Federal Cap-and-Trade Program , 2009 .

[17]  Christoph Böhringer,et al.  The synthesis of bottom-up and top-down in energy policy modeling , 1998 .

[18]  Leo Schrattenholzer,et al.  MESSAGE-MACRO: Linking an energy supply model with a macroeconomic module and solving it iteratively , 2000 .

[19]  R. Stavins,et al.  A Meaningful U.S. Cap-and-Trade System to Address Climate Change , 2008 .

[20]  Ian Sue Wing,et al.  The synthesis of bottom-up and top-down approaches to climate policy modeling : Electric power technologies and the cost of limiting US CO2 emissions , 2006 .

[21]  William J. Nuttall,et al.  Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices? , 2006 .

[22]  L. Mathiesen Computation of economic equilibria by a sequence of linear complementarity problems , 1985 .

[23]  C. Hitch Modeling energy-economy interactions : five approaches , 2015 .

[24]  M. Tavoni,et al.  A World Induced Technical Change Hybrid Model , 2006 .

[25]  T. Rutherford Extension of GAMS for complementarity problems arising in applied economic analysis , 1995 .

[26]  T. Rutherford,et al.  Combining bottom-up and top-down , 2008 .

[27]  Paul S. Armington A Theory of Demand for Products Distinguished by Place of Production (Une théorie de la demande de produits différenciés d'après leur origine) (Una teoría de la demanda de productos distinguiéndolos según el lugar de producción) , 1969 .

[28]  John P. Weyant,et al.  Combined energy models , 1980 .

[29]  Sergey Paltsev,et al.  Distributional Impacts of a U.S. Greenhouse Gas Policy , 2009 .

[30]  Catarina Roseta-Palma,et al.  Technology adoption in nonrenewable resource management , 2009 .

[31]  Leslie G. Fishbone,et al.  Markal, a linear‐programming model for energy systems analysis: Technical description of the bnl version , 1981 .

[32]  Valentina Bosetti,et al.  A World induced Technical Change Hybrid Model , 2006 .

[33]  Sergey Paltsev,et al.  The cost of climate policy in the United States , 2009 .

[34]  Salvatore Lazzari,et al.  Energy Tax Policy , 2003 .

[35]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[36]  Henry D. Jacoby,et al.  Experiments with a Hybrid CGE-MARKAL Model1 , 2006 .

[37]  Ian Sue Wing,et al.  The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework , 2008 .

[38]  Mei Yuan,et al.  A top–down bottom–up modeling approach to climate change policy analysis , 2009 .

[39]  Dale W. Jorgenson,et al.  Economic and Technological Models for Evaluation of Energy Policy , 1977 .

[40]  L. Goulder,et al.  Optimal Environmental Taxation in the Presence of Other Taxes: General Equilibrium Analyses , 1994 .