Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals

AbstractDeformation and fracture processes have been examined in WC–Co tool materials, still the most commonly used hardmetal. The relevant microstructural parameters are described in detail and an assessment is made of their effects on strength and fracture tests at ambient temperature, for the constituent phases separately and in combination. The results of properties more relevant to service behaviour, such as fatigue and creep, are summarised. Finally, recommendations are made with regard to the need for further fundamental research.

[1]  S. Suresh,et al.  Room temperature fatigue crack growth in cemented carbides , 1986 .

[2]  H. Matsubara,et al.  The Bend Deformation of WC–Co Cemented Carbides at Temperatures up to 1273 K , 1982 .

[3]  Jh Underwood,et al.  Chevron-Notched Specimens: Testing and Stress Analysis , 1984 .

[4]  Quantitative analysis of delayed fracture observed in stress rate tests on brittle materials , 1982 .

[5]  F. Froes,et al.  Interrelations between fracture toughness and other mechanical properties in titanium alloys , 1977 .

[6]  B. Roebuck,et al.  Defect-initiated fracture and the bend strength of WC-Co hardmetals , 1977 .

[7]  Minyoung Lee High temperature hardness of tungsten carbide , 1983 .

[8]  Anthony Kelly,et al.  Crystallography and crystal defects , 1970 .

[9]  E. Ashworth,et al.  A model for the effect of grain size on the yield stress of metals , 1982 .

[10]  E. A. Almond,et al.  The influence of composition, phase transformation and varying the relative F.C.C. and H.C.P. phase contents on the properties of dilute CoWC alloys , 1984 .

[11]  B. Roebuck,et al.  Fracture topography of WC-Co hardmetals , 1981 .

[12]  J. A. Peck,et al.  Quantitative fractography of WC-Co cermets by Auger spectroscopy , 1981 .

[13]  M. Loretto,et al.  The defect structure of tungsten carbide in deformed tungsten carbide-cobalt composites , 1982 .

[14]  R. Sinclair,et al.  Defect interactions in deformed WC , 1984 .

[15]  T. Ericsson The temperature and concentration dependence of the stacking fault energy in the Co-Ni system , 1966 .

[16]  V. Krstić,et al.  Toughening in WC–Co composites , 1985 .

[17]  R. Sinclair,et al.  Intergranular cracking in WC-6% Co: An application of the von mises criterion , 1983 .

[18]  B. Roebuck The tensile strength of hardmetals , 1979 .

[19]  S. Luyckx Slip system of tungsten carbide crystals at room temperature , 1970 .

[20]  Clifford Goodman,et al.  American Society of Mechanical Engineers , 1988 .

[21]  J. Gurland,et al.  The fracture toughness of WC-Co two-phase alloys—A preliminary model , 1980 .

[22]  B. Sundström,et al.  Determination of Young's modulus and poisson's ratio for WCCo alloys by the finite element method , 1972 .

[23]  H. Doi,et al.  Bend Deformation and Fracture of WC–Co Alloys at Elevated Temperatures , 1977 .

[24]  H. Margolin,et al.  Finite Element Method (FEM) Calculations of Stress-Strain Behavior of Alpha-Beta Ti-Mn Alloys: Part I. Stress-Strain Relations , 1982 .

[25]  H. Doi,et al.  Tensile Creep of WC-10%Co and WC-10%TaC-10%Co Alloys at Elevated Temperatures , 1975 .

[26]  G. Nouet,et al.  Grain boundary analysis in TEM. IV. Coincidence and the associated defect structure in tungsten carbide , 1980 .

[27]  J. Gurland,et al.  A structural approach to the yield strength of two-phase alloys with coarse microstructures , 1979 .

[28]  Martin L. Green,et al.  A model for the FCC→HCP transformation, its applications, and experimental evidence , 1977 .

[29]  G. Nouet,et al.  Analysis of Structure Defects in Tungsten Carbide , 1980, October 16.

[30]  A. Krawitz The use of X-ray stress analysis for WC-base cermets , 1985 .

[31]  E. J. Freise,et al.  DETERMINATION OF THE SLIP SYSTEMS IN SINGLE CRYSTALS OF TUNGSTEN MONOCARBIDE , 1965 .

[32]  B. Roebuck,et al.  Equivalence of indentation and compressive creep tests on a WC/Co hardmetal , 1982 .

[33]  M. Laugier The distribution of WC grain sizes and cobalt spacings in some WC—Co composites , 1986 .

[34]  A. Evans,et al.  Fracture Mechanics of Ceramics , 1986 .

[35]  J. C. Fisher On the strength of solid solution alloys , 1954 .

[36]  B. Roebuck,et al.  Fatigue-crack growth in WC–Co hardmetals , 1980 .

[37]  B. Jaensson Residual stresses and stress-strain behaviour of the WC-Co composite material , 1971 .

[38]  A. Horsewell,et al.  An intergranular mechanism for the F.C.C. → H.C.P. martensitic transformation , 1975 .

[39]  J. Gurland,et al.  Hardness and deformation of cemented tungsten carbide , 1978 .

[40]  J. D. Wood,et al.  Elevated temperature compressive creep behavior of tungsten carbide-cobalt alloys , 1968 .

[41]  J. Christian A theory of the transformation in pure cobalt , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  B. Roebuck,et al.  Phase size distribution in WC/Co hardmetal , 1986 .

[43]  B. Roebuck,et al.  A square indentation test for tool materials , 1980 .

[44]  V. Sarin,et al.  On the Deformation of WC–Co Cemented Carbides , 1975 .

[45]  L. M. Barker A simplified method for measuring plane strain fracture toughness , 1977 .

[46]  J. Gurland,et al.  The fracture toughness of WCCo alloys measured on single-edge notched beam specimens precracked by electron discharge machining , 1978 .

[47]  M. Fine Fatigue resistance of metals , 1980 .

[48]  B. Roebuck,et al.  Precracking of fracture-toughness specimens of hardmetals by wedge indentation , 1978 .

[49]  D. N. French X‐Ray Stress Analysis of WC‐Co Cermets: II, Temperature Stresses* , 1969 .

[50]  E. Drake,et al.  Binder deformation in WC-(Co, Ni) cemented carbide composites , 1985 .