On the extreme eigenvalues of hermitian (block) toeplitz matrices

Abstract We are concerned with the behavior of the minimum (maximum) eigenvalue λ0(n) (λn(n)) of an (n + 1) × (n + 1) Hermitian Toeplitz matrix Tn(ƒ) where ƒ is an integrable real-valued function. Kac, Murdoch, and Szego, Widom, Parter, and R. H. Chan obtained that λ0(n) — min ƒ = O(1/n2k) in the case where ƒ C2k, at least locally, and ƒ — inf ƒ has a zero of order 2k. We obtain the same result under the second hypothesis alone. Moreover we develop a new tool in order to estimate the extreme eigenvalues of the mentioned matrices, proving that the rate of convergence of λ0(n) to inf ƒ depends only on the order ρ (not necessarily even or integer or finite) of the zero of ƒ — inf ƒ. With the help of this tool, we derive an absolute lower bound for the minimal eigenvalues of Toeplitz matrices generated by nonnegative L1 functions and also an upper bound for the associated Euclidean condition numbers. Finally, these results are extended to the case of Hermitian block Toeplitz matrices with Toeplitz blocks generated by a bivariate integrable function ƒ.

[1]  U. Grenander On Toeplitz forms and stationary processes , 1952 .

[2]  Harold Widom,et al.  On the eigenvalues of certain Hermitian operators , 1958 .

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  Eugene E. Tyrtyshnikov,et al.  Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .

[5]  U. Grenander,et al.  Statistical analysis of stationary time series , 1957 .

[6]  Giuseppe Fiorentino,et al.  C. G. preconditioning for Toeplitz matrices , 1993 .

[7]  Stefano Serra,et al.  On the extreme spectral properties of Toeplitz matrices generated byL1 functions with several minima/maxima , 1996 .

[8]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[9]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[10]  S. Parter Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations , 1961 .

[11]  Stefano Serra,et al.  Asymptotic Results on the Spectra of Block Toeplitz Preconditioned Matrices , 1999 .

[12]  E. L. Ortiz,et al.  Error analysis of the Tau Method: Dependence of the error on the degree and on the length of the interval of approximation , 1993 .

[13]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .

[14]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[15]  Stefano Serra,et al.  Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems , 1994 .

[16]  G. Szegő,et al.  On the Eigen-Values of Certain Hermitian Forms , 1953 .

[17]  W. Rudin Real and complex analysis , 1968 .

[18]  W. Pierson,et al.  Wind Generated Gravity Waves , 1955 .

[19]  R. Chan Toeplitz Preconditioners for Toeplitz Systems with Nonnegative Generating Functions , 1991 .

[20]  Mohsen Pourahmadi Remarks on extreme eigenvalues of Toeplitz matrices , 1988 .

[21]  Stefano Serra Capizzano,et al.  Asymptotic Results on the Spectra of Block Toeplitz Preconditioned Matrices , 1998, SIAM J. Matrix Anal. Appl..