Nanoscale TiO2 Protection Layer Enhances the Built-In Field and Charge Separation Performance of GaP Photoelectrodes.

Nanoscale oxide layer protected semiconductor photoelectrodes show enhanced stability and performance for solar fuels generation, although the mechanism for the performance enhancement remains unclear due to a lack of understanding of the microscopic interfacial field and its effects. Here, we directly probe the interfacial fields at p-GaP electrodes protected by n-TiO2 and its effect on charge carriers by transient reflectance spectroscopy. Increasing the TiO2 layer thickness from 0 to 35 nm increases the field in the GaP depletion region, enhancing the rate and efficiency of interfacial electron transfer from the GaP to TiO2 on the ps time scale as well as retarding interfacial recombination on the microsecond time scale. This study demonstrates a general method for providing a microscopic view of the photogenerated charge carrier's pathway and loss mechanisms from the bulk of the electrode to the long-lived separated charge at the interface that ultimately drives the photoelectrochemical reactions.

[1]  Ryan T. Pekarek,et al.  Transient evolution of built-in field at junctions of GaAs photoelectrodes. , 2020, ACS applied materials & interfaces.

[2]  M. Beard,et al.  Hot-carrier transfer at photocatalytic silicon/platinum interfaces. , 2020, The Journal of chemical physics.

[3]  S. Biswas,et al.  Controlling polaron formation at hematite surfaces by molecular functionalization probed by XUV reflection-absorption spectroscopy. , 2019, The Journal of chemical physics.

[4]  Xihan Chen,et al.  Selecting between two transition states by which water oxidation intermediates decay on an oxide surface , 2019, Nature Catalysis.

[5]  Josh Vura-Weis,et al.  Photoinduced valence tautomerism of a cobalt-dioxolene complex revealed with femtosecond M-edge XANES. , 2019, The Journal of chemical physics.

[6]  Josh Vura-Weis,et al.  Sub-100 fs Intersystem Crossing to a Metal-Centered Triplet in Ni(II)OEP Observed with M-Edge XANES. , 2019, The journal of physical chemistry. A.

[7]  C. Blackman,et al.  act of charge separation at the timescale of water oxidation † , 2019 .

[8]  S. Biswas,et al.  Identifying the acceptor state in NiO hole collection layers: direct observation of exciton dissociation and interfacial hole transfer across a Fe2O3/NiO heterojunction. , 2018, Physical chemistry chemical physics : PCCP.

[9]  Lucas H. Hess,et al.  Physical Origins of the Transient Absorption Spectra and Dynamics in Thin-Film Semiconductors: The Case of BiVO4 , 2018, The Journal of Physical Chemistry C.

[10]  S. Biswas,et al.  Ultrafast Electron Trapping and Defect-Mediated Recombination in NiO Probed by Femtosecond Extreme Ultraviolet Reflection-Absorption Spectroscopy. , 2018, The journal of physical chemistry letters.

[11]  S. Biswas,et al.  Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection-absorption spectroscopy. , 2018, Chemical communications.

[12]  M. Guzman,et al.  Cu 2 O/TiO 2 heterostructures for CO 2 reduction through a direct Z-scheme: Protecting Cu 2 O from photocorrosion , 2017 .

[13]  D. J. Hill,et al.  Mapping Free-Carriers in Multijunction Silicon Nanowires Using Infrared Near-Field Optical Microscopy. , 2017, Nano letters.

[14]  Erik M. Grumstrup,et al.  Probing Intrawire, Interwire, and Diameter-Dependent Variations in Silicon Nanowire Surface Trap Density with Pump-Probe Microscopy. , 2017, Nano letters.

[15]  S. Biswas,et al.  Achieving Surface Sensitivity in Ultrafast XUV Spectroscopy: M2,3-Edge Reflection-Absorption of Transition Metal Oxides , 2017 .

[16]  I. Parkin,et al.  Water Oxidation Kinetics of Accumulated Holes on the Surface of a TiO2 Photoanode: A Rate Law Analysis , 2017 .

[17]  F. Toma,et al.  Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy. , 2017, Journal of the American Chemical Society.

[18]  Lucas H. Hess,et al.  Probing interfacial energetics and charge transfer kinetics in semiconductor nanocomposites: New insights into heterostructured TiO2/BiVO4 photoanodes , 2017 .

[19]  U. Bergmann,et al.  Carrier-Specific Femtosecond XUV Transient Absorption of PbI2 Reveals Ultrafast Nonradiative Recombination , 2017, 1703.03135.

[20]  D. Prendergast,et al.  The Formation Time of Ti-O• and Ti-O•-Ti Radicals at the n-SrTiO3/Aqueous Interface during Photocatalytic Water Oxidation. , 2017, Journal of the American Chemical Society.

[21]  S. Biswas,et al.  Achieving Surface Sensitivity in Ultrafast XUV Spectroscopy: M_2,3-edge Reflection-Absorption of Transition Metal Oxides , 2017 .

[22]  J. Durrant,et al.  Rate Law Analysis of Water Oxidation and Hole Scavenging on a BiVO4 Photoanode , 2016 .

[23]  Marko Becker,et al.  Principles Of Semiconductor Devices , 2016 .

[24]  James L. Young,et al.  Semiconductor interfacial carrier dynamics via photoinduced electric fields , 2015, Science.

[25]  Yu Yang,et al.  An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment , 2015, Nano Research.

[26]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[27]  M. Grätzel,et al.  Rate Law Analysis of Water Oxidation on a Hematite Surface , 2015, Journal of the American Chemical Society.

[28]  F. Toma,et al.  Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate , 2015 .

[29]  C. Battaglia,et al.  Role of TiO2 Surface Passivation on Improving the Performance of p-InP Photocathodes , 2015 .

[30]  C. Black,et al.  Quantifying bulk and surface recombination processes in nanostructured water splitting photocatalysts via in situ ultrafast spectroscopy. , 2015, Nano letters.

[31]  Erik M. Grumstrup,et al.  Reversible strain-induced electron-hole recombination in silicon nanowires observed with femtosecond pump-probe microscopy. , 2014, Nano letters.

[32]  A. Alivisatos,et al.  Charge carrier dynamics of photoexcited Co3O4 in methanol: extending high harmonic transient absorption spectroscopy to liquid environments. , 2014, Nano letters.

[33]  A. Alivisatos,et al.  Characterization of Photo-Induced Charge Transfer and Hot Carrier Relaxation Pathways in Spinel Cobalt Oxide (Co3O4) , 2014 .

[34]  S. Cronin,et al.  CO2 Reduction to Methanol on TiO2-Passivated GaP Photocatalysts , 2014 .

[35]  F. Toma,et al.  Electronic Structure of Monoclinic BiVO4 , 2014 .

[36]  N. Lewis,et al.  Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO_2/Ni Coatings , 2014 .

[37]  R. Liu,et al.  Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. , 2014, ACS applied materials & interfaces.

[38]  M. Grätzel,et al.  Ultrafast Charge Carrier Recombination and Trapping in Hematite Photoanodes under Applied Bias , 2014, Journal of the American Chemical Society.

[39]  Erik M. Grumstrup,et al.  Imaging charge separation and carrier recombination in nanowire p-i-n junctions using ultrafast microscopy. , 2014, Nano letters.

[40]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[41]  Thomas W. Hamann,et al.  Water oxidation on hematite photoelectrodes: Insight into the nature of surface states through in situ spectroelectrochemistry , 2014 .

[42]  Omid Zandi,et al.  Enhanced Water Splitting Efficiency Through Selective Surface State Removal. , 2014, The journal of physical chemistry letters.

[43]  M. Grätzel,et al.  Back electron-hole recombination in hematite photoanodes for water splitting. , 2014, Journal of the American Chemical Society.

[44]  S. Cronin,et al.  Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts. , 2014, Physical chemistry chemical physics : PCCP.

[45]  Jie Song,et al.  Visible-light-driven hydrogen evolution from water using a noble-metal-free polyoxometalate catalyst , 2013 .

[46]  Joel W. Ager,et al.  Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting , 2013 .

[47]  Brian P. Mehl,et al.  Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy. , 2013, Nano letters.

[48]  Yu-Lun Chueh,et al.  p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. , 2012, Angewandte Chemie.

[49]  Dunwei Wang,et al.  In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe2O3) electrodes , 2012 .

[50]  Juan Bisquert,et al.  Water oxidation at hematite photoelectrodes: the role of surface states. , 2012, Journal of the American Chemical Society.

[51]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[52]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[53]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[54]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[55]  A. Vengurlekar,et al.  Dynamics of the pump-probe reflectivity spectra in GaAs and GaN , 2004 .

[56]  A. Sabbah,et al.  Femtosecond Pump-Probe Reflectivity Study of Silicon Carrier Dynamics , 2002 .

[57]  D. Hall,et al.  Airy function analysis of Franz-Keldysh oscillations in the photoreflectance spectra of In1-xGaxAsyP1-y layers , 1997 .

[58]  M. Shur,et al.  Handbook Series on Semiconductor Parameters , 1996 .

[59]  Hongen Shen,et al.  Franz–Keldysh oscillations in modulation spectroscopy , 1995 .

[60]  Gerald Earle Jellison,et al.  Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry , 1992 .

[61]  Shen,et al.  Generalized Franz-Keldysh theory of electromodulation. , 1990, Physical review. B, Condensed matter.

[62]  M. Madou,et al.  Investigation of photoelectrochemical corrosion of semiconductors. 1 , 1980 .

[63]  Su-Moon Park,et al.  Thermodynamic stabilities of semiconductor electrodes , 1979 .