暂无分享,去创建一个
D. J. James | B. Yanny | Francisco J. Castander | E. Bertin | D. W. Gerdes | K. Bechtol | P. Melchior | Alex Drlica-Wagner | H. T. Diehl | B. Flaugher | T. N. Varga | E. Gaztanaga | H. Lin | A. Amon | M. Aguena | F. Menanteau | Nikolay Kuropatkin | S. Mucesh | W. G. Hartley | A. Palmese | O. Lahav | L. Whiteway | G. M. Bernstein | A. CarneroRosell | M. CarrascoKind | A. Choi | K. Eckert | S. Everett | D. Gruen | R. A. Gruendl | I. Harrison | E. M. Huff | Ignacio Sevilla-Noarbe | Erin Sheldon | S. Allam | D. Bacon | S. Bhargava | D. Brooks | J. Carretero | C. Conselice | M. Costanzi | Martín Crocce | L. N. da Costa | M. E. S. Pereira | J. DeVicente | S. Desai | A. E. Evrard | I. Ferrero | Pablo Fosalba | J. Frieman | J. García-Bellido | J. Gschwend | G. Gutierrez | S. R. Hinton | D. L. Hollowood | K. Honscheid | K. Kuehn | M. Lima | M. A. G. Maia | R. Miquel | R. Morgan | F. Paz-Chinchón | A. A. Plazas | E. Sanchez | V. Scarpine | M. Schubnell | S. Serrano | M. Smith | E. Suchyta | G. Tarle | D. Thomas | C. To | R. D. Wilkinson | D. Gerdes | J. Frieman | O. Lahav | F. Castander | P. Fosalba | D. Bacon | C. Conselice | J. García-Bellido | A. Rosell | L. Costa | K. Honscheid | M. Maia | G. Bernstein | Peter Melchior | M. Kind | R. Gruendl | A. Palmese | W. Hartley | M. Pereira | S. Allam | J. DeVicente | H. Diehl | J. Gschwend | I. Sevilla-Noarbe | K. Bechtol | E. Bertin | D. Brooks | J. Carretero | M. Crocce | S. Desai | A. Drlica-Wagner | A. Evrard | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. Hollowood | D. James | K. Kuehn | N. Kuropatkin | M. Lima | F. Menanteau | R. Miquel | A. Plazas | V. Scarpine | M. Schubnell | S. Serrano | M. Smith | E. Suchyta | G. Tarlé | E. Sheldon | B. Yanny | E. Sánchez | H. Lin | D. Thomas | L. Whiteway | M. Aguena | S. Hinton | E. Huff | F. Paz-Chinchón | R. Morgan | M. Costanzi | S. Everett | A. Choi | S. Bhargava | T. Varga | R. Wilkinson | I. Harrison | A. Amon | K. Eckert | I. Ferrero | C. To | S. Mucesh
[1] H. Cramér. On the composition of elementary errors , .
[2] R. A. Leibler,et al. On Information and Sufficiency , 1951 .
[3] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[4] F. Mosteller,et al. Understanding robust and exploratory data analysis , 1985 .
[5] Radiation flux enhancement and absorption in thin films , 1984 .
[6] B. Schutz. Determining the Hubble constant from gravitational wave observations , 1986, Nature.
[7] A. N. Shiryayev,et al. 15. On The Empirical Determination of A Distribution Law , 1992 .
[8] O. Lahav,et al. Morphological Classification of galaxies by Artificial Neural Networks , 1992 .
[9] N. Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .
[10] S. Odewahn,et al. Automated star/galaxy discrimination with neural networks , 1992 .
[11] S. Charlot,et al. Spectral evolution of stellar populations using isochrone synthesis , 1993 .
[12] A. Szalay,et al. Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.
[13] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[14] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[15] Wayne Hu,et al. � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .
[16] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[17] L. Moscardini,et al. Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.
[18] Robert Lupton,et al. A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.
[19] T. Hamill. Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .
[20] On the mass function of star clusters , 2002, astro-ph/0207514.
[21] Mark Dickinson,et al. Stellar Masses of High-Redshift Galaxies , 2003 .
[22] Michigan.,et al. Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.
[23] Ralf Bender,et al. The mass of galaxies at low and high redshift : proceedings of the European Southern Observatory and Universitäts-Sternwarte München workshop held in Venice, Italy, 24-26 October 2001 , 2003 .
[24] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[25] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[26] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[27] J.Lee,et al. THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.
[28] Cheng Li,et al. The cross-correlation between galaxies and groups: probing the galaxy distribution in and around dark matter haloes , 2005, astro-ph/0504477.
[29] Y. Wadadekar. Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.
[30] Spain.,et al. Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.
[31] M. Way,et al. Novel Methods for Predicting Photometric Redshifts from Broadband Photometry Using Virtual Sensors , 2006 .
[32] L. Guzzo,et al. The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.
[33] Walter A. Siegmund,et al. The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.
[34] J. Skilling. Nested sampling for general Bayesian computation , 2006 .
[35] Carlos E. C. J. Gabriel,et al. Astronomical Data Analysis Software and Systems Xv , 2022 .
[36] G. Zamorani,et al. The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .
[37] Alvio Renzini. Stellar Population Diagnostics of Elliptical Galaxy Formation , 2006 .
[38] A. Raftery,et al. Probabilistic forecasts, calibration and sharpness , 2007 .
[39] Robert J. Brunner,et al. Robust Machine Learning Applied to Astronomical Data Sets. II. Quantifying Photometric Redshifts for Quasars Using Instance-based Learning , 2006, astro-ph/0612471.
[40] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[41] Paolo Coppi,et al. EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.
[42] S. J. Lilly,et al. Precision photometric redshift calibration for galaxy–galaxy weak lensing , 2007, 0709.1692.
[43] V. Buat,et al. Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.
[44] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[45] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[46] Simon J. Lilly,et al. Photo‐z performance for precision cosmology , 2009, 0910.5735.
[47] Garth D. Illingworth,et al. AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.
[48] Nicholas M. Ball,et al. Incorporating photometric redshift probability density information into real-space clustering measurements , 2009, 0903.3121.
[49] Alexander S. Szalay,et al. RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS , 2010 .
[50] Jonathan R Goodman,et al. Ensemble samplers with affine invariance , 2010 .
[51] Jiangang Hao,et al. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.
[52] 韩云坤. Decoding spectral energy distributions of dust-obscured starburst-AGN , 2011 .
[53] James E. Geach,et al. Unsupervised self-organized mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys , 2011, 1110.0005.
[54] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[55] Daniel J. B. Smith,et al. MAGPHYS: a publicly available tool to interpret observed galaxy SEDs , 2011, Proceedings of the International Astronomical Union.
[56] B. Groves,et al. Fitting the integrated spectral energy distributions of galaxies , 2010, 1008.0395.
[57] Zhanwen Han,et al. DECODING SPECTRAL ENERGY DISTRIBUTIONS OF DUST-OBSCURED STARBURST–ACTIVE GALACTIC NUCLEUS , 2012, 1202.6203.
[58] M. J. Way,et al. Can Self-Organizing Maps Accurately Predict Photometric Redshifts? , 2012 .
[59] C. Conroy. Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.
[60] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[61] Robert J. Brunner,et al. SOMz: photometric redshift PDFs with self organizing maps and random atlas , 2013, ArXiv.
[62] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[63] Tilmann Gneiting,et al. Copula Calibration , 2013, 1307.7650.
[64] Zhanwen Han,et al. BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES , 2014, 1408.6399.
[65] M. Fairbairn,et al. GAz: a genetic algorithm for photometric redshift estimation , 2014, 1412.5997.
[66] A. Fontana,et al. Deconstructing the Galaxy Stellar Mass Function with UKIDSS and CANDELS: The Impact of Colour, Structure and Environment , 2014, 1411.3339.
[67] Stephen J. Roberts,et al. A Sparse Gaussian Process Framework for Photometric Redshift Estimation , 2015, ArXiv.
[68] C. Bonnett. Using neural networks to estimate redshift distributions. An application to CFHTLenS , 2013, 1312.1287.
[69] Eibe Frank,et al. Accurate photometric redshift probability density estimation – method comparison and application , 2015, 1503.08215.
[70] Robert Armstrong,et al. GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..
[71] Iftach Sadeh,et al. ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning , 2015, 1507.00490.
[72] Ben Hoyle,et al. Measuring photometric redshifts using galaxy images and Deep Neural Networks , 2015, Astron. Comput..
[73] C. B. D'Andrea,et al. No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey , 2015, 1507.08336.
[74] Modelling and interpreting spectral energy distributions of galaxies with BEAGLE , 2016 .
[75] Fabian Gieseke,et al. Sacrificing information for the greater good: how to select photometric bands for optimal accuracy , 2015, Monthly Notices of the Royal Astronomical Society.
[76] C. B. D'Andrea,et al. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.
[77] O. Fèvre,et al. THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.
[78] Fabian Gieseke,et al. Uncertain Photometric Redshifts , 2016 .
[79] How to measure metallicity from five-band photometry with supervised machine learning algorithms , 2015, 1510.08076.
[80] S. Charlot,et al. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE , 2016, 1603.03037.
[81] D. Gerdes,et al. Comparing Dark Energy Survey and HST–CLASH observations of the galaxy cluster RXC J2248.7−4431: implications for stellar mass versus dark matter , 2016, 1601.00589.
[82] R. Nichol,et al. The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.
[83] Satoshi Miyazaki,et al. Photometric Redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1 , 2017, 1704.05988.
[84] D. W. Gerdes,et al. Evolution of Galaxy Luminosity and Stellar-Mass Functions since $z=1$ with the Dark Energy Survey Science Verification Data , 2017 .
[85] Kai Lars Polsterer,et al. Photometric redshift estimation via deep learning , 2017, 1706.02467.
[86] O. Ilbert,et al. The many flavours of photometric redshifts , 2018, Nature Astronomy.
[87] Zhanwen Han,et al. A Comprehensive Bayesian Discrimination of the Simple Stellar Population Model, Star Formation History, and Dust Attenuation Law in the Spectral Energy Distribution Modeling of Galaxies , 2018, The Astrophysical Journal Supplement Series.
[88] B. Yanny,et al. Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.
[89] Emmanuel Bertin,et al. Photometric redshifts from SDSS images using a convolutional neural network , 2018, Astronomy & Astrophysics.
[90] Saso Dzeroski,et al. Ensembles for multi-target regression with random output selections , 2018, Machine Learning.
[91] J. Tinker,et al. The Connection Between Galaxies and Their Dark Matter Halos , 2018, Annual Review of Astronomy and Astrophysics.
[92] R. Davé,et al. Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.
[93] N. Aghanim,et al. Star formation rates and stellar masses from machine learning , 2019, Astronomy & Astrophysics.
[94] Stephen Kent,et al. Dark Energy Survey’s Observation Strategy, Tactics, and Exposure Scheduler , 2019, 1912.06254.
[95] M. P. Hobson,et al. Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.
[96] G. Longo,et al. Star formation rates for photometric samples of galaxies using machine learning methods , 2019, Monthly Notices of the Royal Astronomical Society.
[97] N Tonello,et al. The PAU Survey: early demonstration of photometric redshift performance in the COSMOS field , 2018, Monthly Notices of the Royal Astronomical Society.
[98] D. Baron. Machine Learning in Astronomy: a practical overview , 2019, 1904.07248.
[99] B. A. Boom,et al. First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814 , 2019, The Astrophysical Journal.
[100] Eleonora Di Valentino,et al. Gravitational wave cosmology and astrophysics with large spectroscopic galaxy surveys , 2019, 1903.04730.
[101] D. Corre,et al. CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.
[102] J. Brinchmann,et al. Euclid preparation , 2020, 2009.12112.
[103] D. Gerdes,et al. A Statistical Standard Siren Measurement of the Hubble Constant from the LIGO/Virgo Gravitational Wave Compact Object Merger GW190814 and Dark Energy Survey Galaxies , 2020, The Astrophysical Journal.
[104] The LSST Dark Energy Science Collaboration,et al. Evaluation of probabilistic photometric redshift estimation approaches for LSST , 2020 .
[105] D. Gerdes,et al. Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters , 2019, Monthly Notices of the Royal Astronomical Society.
[106] Il,et al. Dark Energy Survey Year 3 Results: Deep Field Optical + Near-Infrared Images and Catalogue , 2020, 2012.12824.
[107] D. Gerdes,et al. Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology , 2020, Astrophysical Journal Supplement Series.
[108] Tucson,et al. Dark Energy Survey Year 3 Results: Measuring the Survey Transfer Function with Balrog , 2022, The Astrophysical Journal Supplement Series.