A new energy conversion technology joining electrochemical and physical principles

We report a new energy conversion technology joining electrochemical and physical principles. This technology can realize the fuel cell function but built on a different scientific principle. The d ...

[1]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[2]  Shanwen Tao,et al.  Preparation of LiMO2 (M = Co, Ni) cathode materials for intermediate temperature fuel cells by sol-gel processes , 1999 .

[3]  Truls Norbya Proton conduction in oxides , 1990 .

[4]  Rizwan Raza,et al.  Improved ceria-carbonate composite electrolytes , 2010 .

[5]  Liangdong Fan,et al.  Fuel cells based on electrolyte and non-electrolyte separators , 2011 .

[6]  Liping Li,et al.  Surface hydration-mediated conduction of NiO nanocrystals , 2008 .

[7]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[8]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[9]  F. Figueiredo,et al.  Intrinsic and extrinsic compositional effects in ceria/carbonate composite electrolytes for fuel cells , 2011 .

[10]  Amitabh Das,et al.  Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles , 2006 .

[11]  C. Monty,et al.  Influence of oxygen pressure on oxygen self-diffusion in NiO , 1984 .

[12]  Jian Meng,et al.  Electrical conductivity optimization in electrolyte-free fuel cells by single-component Ce0.8Sm0.2O2-δ–Li0.15Ni0.45Zn0.4 layer , 2012 .

[13]  H. Saltsburg,et al.  Transient oxygen species on NiO single-crystal surfaces☆ , 1964 .

[14]  J. Carrasco,et al.  First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides. , 2004, Physical review letters.

[15]  Rizwan Raza,et al.  An Electrolyte‐Free Fuel Cell Constructed from One Homogenous Layer with Mixed Conductivity , 2011 .

[16]  B. Steele,et al.  Material science and engineering: The enabling technology for the commercialisation of fuel cell systems , 2001 .

[17]  M. Fedorov,et al.  Organic semiconductor solar cells with a heterojunction , 1997 .

[18]  M. Muhammed,et al.  Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature s , 2011 .

[19]  R. Kishore,et al.  Generalized equations for the steady-state analysis of inhomogeneous semiconductor devices , 1990 .

[20]  Liangdong Fan,et al.  A fuel cell with a single component functioning simultaneously as the electrodes and electrolyte , 2011 .

[21]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[22]  M. Matsuoka,et al.  Performance of Cu2O/ZnO Solar Cell Prepared By Two-Step Electrodeposition , 2004 .

[23]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .