Maximum Norm A Posteriori Error Estimation for Parabolic Problems Using Elliptic Reconstructions

A semilinear second-order parabolic equation is considered in a regular and a singularly perturbed regime. For this equation, we give computable a posteriori error estimates in the maximum norm. Semidiscrete and fully discrete versions of the backward Euler, Crank--Nicolson, and discontinuous Galerkin $dG(r)$ methods are addressed. For their full discretizations, we employ elliptic reconstructions that are, respectively, piecewise-constant, piecewise-linear, and piecewise-quadratic for $r=1$ in time. We also use certain bounds for the Green's function of the parabolic operator.

[1]  Ricardo H. Nochetto,et al.  A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..

[2]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[3]  Omar Lakkis,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[4]  Alan Demlow,et al.  Sharply local pointwise a posteriori error estimates for parabolic problems , 2010, Math. Comput..

[5]  T. Linss,et al.  Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem , 2007 .

[6]  E. Davies,et al.  Non‐Gaussian Aspects of Heat Kernel Behaviour , 1997 .

[7]  Ricardo H. Nochetto,et al.  A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.

[8]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[9]  Alan Demlow,et al.  A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems , 2007, SIAM J. Numer. Anal..

[10]  Torsten Linss,et al.  Layer-adapted meshes for reaction-convection-diffusion problems , 2010 .

[11]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[12]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[13]  Natalia Kopteva,et al.  Maximum norm a posteriori error estimate for a 3d singularly perturbed semilinear reaction-diffusion problem , 2006, Adv. Comput. Math..

[14]  Mats Boman,et al.  Global and Localised A Posteriori Error Analysis in the maximum norm for finite element approximations of a convection-diffusion problem , 2000 .

[15]  Natalia Kopteva Maximum Norm A Posteriori Error Estimate for a 2D Singularly Perturbed Semilinear Reaction-Diffusion Problem , 2008, SIAM J. Numer. Anal..

[16]  D. Griffel Applied functional analysis , 1982 .

[17]  Sören Bartels,et al.  Quasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities , 2011, Math. Comput..

[18]  Natalia Kopteva,et al.  Numerical Study of Maximum Norm a Posteriori Error Estimates for Singularly Perturbed Parabolic Problems , 2012, NAA.

[19]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[20]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[21]  T. Dupont Mesh modification for evolution equations , 1982 .

[22]  Torsten Lin,et al.  Layer-adapted meshes for convection-diusion problems , 2003 .

[23]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .

[24]  A. Tikhonov,et al.  Equations of Mathematical Physics , 1964 .

[25]  Natalia Kopteva Maximum norm a posteriori error estimates for a 1D singularly perturbed semilinear reaction–diffusion problem , 2006 .

[26]  Natalia Kopteva,et al.  Maximum Norm a Posteriori Error Estimation For a Time-dependent Reaction-diffusion Problem , 2012, Comput. Methods Appl. Math..

[27]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error estimates for monotone semi-linear equations , 2006, Numerische Mathematik.