Maximum Norm A Posteriori Error Estimation for Parabolic Problems Using Elliptic Reconstructions
暂无分享,去创建一个
[1] Ricardo H. Nochetto,et al. A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..
[2] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[3] Omar Lakkis,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[4] Alan Demlow,et al. Sharply local pointwise a posteriori error estimates for parabolic problems , 2010, Math. Comput..
[5] T. Linss,et al. Maximum-norm error analysis of a non-monotone FEM for a singularly perturbed reaction-diffusion problem , 2007 .
[6] E. Davies,et al. Non‐Gaussian Aspects of Heat Kernel Behaviour , 1997 .
[7] Ricardo H. Nochetto,et al. A posteriori error analysis for higher order dissipative methods for evolution problems , 2006, Numerische Mathematik.
[8] M. Stynes,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .
[9] Alan Demlow,et al. A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems , 2007, SIAM J. Numer. Anal..
[10] Torsten Linss,et al. Layer-adapted meshes for reaction-convection-diffusion problems , 2010 .
[11] Ricardo H. Nochetto,et al. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..
[12] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[13] Natalia Kopteva,et al. Maximum norm a posteriori error estimate for a 3d singularly perturbed semilinear reaction-diffusion problem , 2006, Adv. Comput. Math..
[14] Mats Boman,et al. Global and Localised A Posteriori Error Analysis in the maximum norm for finite element approximations of a convection-diffusion problem , 2000 .
[15] Natalia Kopteva. Maximum Norm A Posteriori Error Estimate for a 2D Singularly Perturbed Semilinear Reaction-Diffusion Problem , 2008, SIAM J. Numer. Anal..
[16] D. Griffel. Applied functional analysis , 1982 .
[17] Sören Bartels,et al. Quasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities , 2011, Math. Comput..
[18] Natalia Kopteva,et al. Numerical Study of Maximum Norm a Posteriori Error Estimates for Singularly Perturbed Parabolic Problems , 2012, NAA.
[19] Kenneth Eriksson,et al. Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .
[20] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[21] T. Dupont. Mesh modification for evolution equations , 1982 .
[22] Torsten Lin,et al. Layer-adapted meshes for convection-diusion problems , 2003 .
[23] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[24] A. Tikhonov,et al. Equations of Mathematical Physics , 1964 .
[25] Natalia Kopteva. Maximum norm a posteriori error estimates for a 1D singularly perturbed semilinear reaction–diffusion problem , 2006 .
[26] Natalia Kopteva,et al. Maximum Norm a Posteriori Error Estimation For a Time-dependent Reaction-diffusion Problem , 2012, Comput. Methods Appl. Math..
[27] Ricardo H. Nochetto,et al. Pointwise a posteriori error estimates for monotone semi-linear equations , 2006, Numerische Mathematik.