Estimation of a semi-physical GLBE model using dual EnKF learning algorithm coupled with a sensor network design strategy: Application to air field monitoring
暂无分享,去创建一个
Mohammed Benjelloun | Gilles Delmaire | Gilles Roussel | Laurent Bourgois | M. Benjelloun | G. Delmaire | G. Roussel | L. Bourgois
[1] Marcel Staroswiecki. ON RECONFIGURABILITY WITH RESPECT TO ACTUATOR FAILURES , 2002 .
[2] Soroosh Sorooshian,et al. Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .
[3] D. Q. Zheng,et al. Online update of model state and parameters of a Monte Carlo atmospheric dispersion model by using ensemble Kalman filter , 2009 .
[4] Eric A. Wan,et al. Nonlinear estimation and modeling of noisy time series by dual kalman filtering methods , 2000 .
[5] G. Evensen,et al. Analysis Scheme in the Ensemble Kalman Filter , 1998 .
[6] D. McLaughlin,et al. Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .
[7] Petar M. Djuric,et al. Gaussian particle filtering , 2003, IEEE Trans. Signal Process..
[8] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[9] Y. Qian,et al. Lattice BGK Models for Navier-Stokes Equation , 1992 .
[10] Jeffrey K. Uhlmann,et al. New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.
[11] Bastien Chopard,et al. Cellular Automata Modeling of Physical Systems , 1999, Encyclopedia of Complexity and Systems Science.
[12] Geir Evensen,et al. The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .
[13] I. Rodríguez‐Iturbe,et al. Random Functions and Hydrology , 1984 .
[14] A.H. Haddad,et al. Applied optimal estimation , 1976, Proceedings of the IEEE.
[15] P. Lallemand,et al. Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[16] Eric A. Wan,et al. Dual Kalman Filtering Methods for Nonlinear Prediction, Smoothing and Estimation , 1996, NIPS.
[17] Michael Ghil,et al. Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .
[18] A. Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.
[19] A. Stordal,et al. Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter , 2011 .
[20] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[21] G. Dreyfus,et al. Réseaux de neurones - Méthodologie et applications , 2002 .
[22] Jeffrey P. Walker,et al. Extended versus Ensemble Kalman Filtering for Land Data Assimilation , 2002 .
[23] J. Boon. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .
[24] D. Bernstein,et al. What is the ensemble Kalman filter and how well does it work? , 2006, 2006 American Control Conference.
[25] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[26] Abdel Aitouche,et al. Fault tolerance analysis of sensor systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[27] L. Luo,et al. Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .
[28] Bastien Chopard,et al. Cellular Automata and Lattice Boltzmann Techniques: an Approach to Model and Simulate Complex Systems , 2002, Adv. Complex Syst..
[29] B. Shizgal,et al. Generalized Lattice-Boltzmann Equations , 1994 .
[30] Gérard Dreyfus,et al. How to be a gray box: dynamic semi-physical modeling , 2001, Neural Networks.
[31] D. d'Humières,et al. Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[32] Shiyi Chen,et al. A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows , 1994, comp-gas/9401004.
[33] G. Evensen. Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .
[34] Adriana Coman,et al. Modélisation spatio-temporelle de la pollution atmosphérique urbaine à partir d'un réseau de surveillance de la qualité de l'air , 2008 .
[35] José Ragot,et al. Évaluation de la qualité d'estimation en fonction de la perte de capteurs , 2008 .
[36] J. Smagorinsky,et al. GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .
[37] P. Bhatnagar,et al. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .
[38] A. Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.