Determining Lyapunov exponents from a time series

[1]  S. Ciliberto,et al.  Chaotic mode competition in parametrically forced surface waves , 1985, Journal of Fluid Mechanics.

[2]  Harry L. Swinney,et al.  Testing nonlinear dynamics , 1984 .

[3]  Jon Wright Method for calculating a Lyapunov exponent , 1984 .

[4]  Progress in Computing Lyapunov Exponents from Experimental Data , 1984 .

[5]  Quasiperiodicity in Chemical Dynamics , 1984 .

[6]  M. Dubois,et al.  Dimension of strange attractors : an experimental determination for the chaotic regime of two convective systems , 1983 .

[7]  James P. Crutchfield,et al.  Low-dimensional chaos in a hydrodynamic system , 1983 .

[8]  John Guckenheimer,et al.  Dimension measurements for geostrophic turbulence , 1983 .

[9]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[10]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[11]  H. Swinney,et al.  Observation of a strange attractor , 1983 .

[12]  N. Packard,et al.  Symbolic dynamics of noisy chaos , 1983 .

[13]  H. Swinney Observations of order and chaos in nonlinear systems , 1983 .

[14]  Hermann Haken,et al.  At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point , 1983 .

[15]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[16]  B. Huberman,et al.  Fluctuations and simple chaotic dynamics , 1982 .

[17]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[18]  A. Wolf,et al.  Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors , 1982 .

[19]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[20]  Hiroyuki Nagashima,et al.  Experiment on Chaotic Responses of a Forced Belousov-Zhabotinsky Reaction , 1982 .

[21]  F. Ledrappier,et al.  Some relations between dimension and Lyapounov exponents , 1981 .

[22]  J. L. Hudson,et al.  Chaos in the Belousov-Zhabotinskii reaction , 1981 .

[23]  F. Takens Detecting strange attractors in turbulence , 1981 .

[24]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[25]  E. Ott,et al.  Dimension of Strange Attractors , 1980 .

[26]  J. Socolar,et al.  Trajectory divergence for coupled relaxation oscillators: Measurements and models , 1980 .

[27]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[28]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[29]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[30]  O. Rössler An equation for hyperchaos , 1979 .

[31]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[32]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[33]  D. Ruelle,et al.  Applications conservant une mesure absolument continue par rapport àdx sur [0, 1] , 1977 .

[34]  O. Rössler An equation for continuous chaos , 1976 .

[35]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[36]  D. Ruelle,et al.  The Ergodic Theory of Axiom A Flows. , 1975 .

[37]  R. Bowen Ergodic theory of Axiom A flows , 1975 .

[38]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 3: Sorting and Searching , 1974 .

[39]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[40]  E. Lorenz Deterministic nonperiodic flow , 1963 .