Determining Lyapunov exponents from a time series
暂无分享,去创建一个
A. Wolf | J. Swift | H. Swinney | J. A. Vastano | J. Vastano
[1] S. Ciliberto,et al. Chaotic mode competition in parametrically forced surface waves , 1985, Journal of Fluid Mechanics.
[2] Harry L. Swinney,et al. Testing nonlinear dynamics , 1984 .
[3] Jon Wright. Method for calculating a Lyapunov exponent , 1984 .
[4] Progress in Computing Lyapunov Exponents from Experimental Data , 1984 .
[5] Quasiperiodicity in Chemical Dynamics , 1984 .
[6] M. Dubois,et al. Dimension of strange attractors : an experimental determination for the chaotic regime of two convective systems , 1983 .
[7] James P. Crutchfield,et al. Low-dimensional chaos in a hydrodynamic system , 1983 .
[8] John Guckenheimer,et al. Dimension measurements for geostrophic turbulence , 1983 .
[9] P. Grassberger,et al. Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .
[10] J. Yorke,et al. The liapunov dimension of strange attractors , 1983 .
[11] H. Swinney,et al. Observation of a strange attractor , 1983 .
[12] N. Packard,et al. Symbolic dynamics of noisy chaos , 1983 .
[13] H. Swinney. Observations of order and chaos in nonlinear systems , 1983 .
[14] Hermann Haken,et al. At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point , 1983 .
[15] P. Grassberger,et al. Characterization of Strange Attractors , 1983 .
[16] B. Huberman,et al. Fluctuations and simple chaotic dynamics , 1982 .
[17] J. Yorke,et al. Dimension of chaotic attractors , 1982 .
[18] A. Wolf,et al. Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors , 1982 .
[19] L. Young. Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.
[20] Hiroyuki Nagashima,et al. Experiment on Chaotic Responses of a Forced Belousov-Zhabotinsky Reaction , 1982 .
[21] F. Ledrappier,et al. Some relations between dimension and Lyapounov exponents , 1981 .
[22] J. L. Hudson,et al. Chaos in the Belousov-Zhabotinskii reaction , 1981 .
[23] F. Takens. Detecting strange attractors in turbulence , 1981 .
[24] Robert Shaw. Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .
[25] E. Ott,et al. Dimension of Strange Attractors , 1980 .
[26] J. Socolar,et al. Trajectory divergence for coupled relaxation oscillators: Measurements and models , 1980 .
[27] James P. Crutchfield,et al. Geometry from a Time Series , 1980 .
[28] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .
[29] I. Shimada,et al. A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .
[30] O. Rössler. An equation for hyperchaos , 1979 .
[31] J. Yorke,et al. Chaotic behavior of multidimensional difference equations , 1979 .
[32] L. Glass,et al. Oscillation and chaos in physiological control systems. , 1977, Science.
[33] D. Ruelle,et al. Applications conservant une mesure absolument continue par rapport àdx sur [0, 1] , 1977 .
[34] O. Rössler. An equation for continuous chaos , 1976 .
[35] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[36] D. Ruelle,et al. The Ergodic Theory of Axiom A Flows. , 1975 .
[37] R. Bowen. Ergodic theory of Axiom A flows , 1975 .
[38] Donald E. Knuth,et al. The Art of Computer Programming, Vol. 3: Sorting and Searching , 1974 .
[39] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[40] E. Lorenz. Deterministic nonperiodic flow , 1963 .