An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal
暂无分享,去创建一个
Kurt Wüthrich | Ilya Grigoriev | Michel O. Steinmetz | K. Wüthrich | M. Steinmetz | F. Winkler | F. Damberger | I. Jelesarov | R. Buey | A. Akhmanova | Anna Akhmanova | Ilian Jelesarov | Srinivas Honnappa | S. Honnappa | H. Jawhari | Anke Weisbrich | A. Lawera | Susana Montenegro Gouveia | N. S. Bhavesh | Fritz K. Winkler | Fred F. Damberger | Neel S. Bhavesh | Hatim Jawhari | Frederik J.A. van Rijssel | Ruben M. Buey | Aleksandra Lawera | I. Grigoriev | S. Gouveia | Anke Weisbrich
[1] Nathan A. Baker,et al. Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[2] Wolfgang Jahnke,et al. Molecular basis of coiled-coil formation , 2007, Proceedings of the National Academy of Sciences.
[3] S. Tsukita,et al. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules , 2000, Current Biology.
[4] J. Cavanagh. Protein NMR Spectroscopy: Principles and Practice , 1995 .
[5] Anna Akhmanova,et al. Capturing protein tails by CAP-Gly domains. , 2008, Trends in biochemical sciences.
[6] K. Kaibuchi,et al. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition , 2007, Proceedings of the National Academy of Sciences.
[7] L. Su,et al. Characterization of Functional Domains of Human EB1 Family Proteins* , 2003, Journal of Biological Chemistry.
[8] G. Wagner,et al. Relaxation-Rate Measurements for 15N−1H Groups with Pulsed-Field Gradients and Preservation of Coherence Pathways , 1994 .
[9] R. Keller,et al. The Computer Aided Resonance Assignment Tutorial , 2004 .
[10] G. Danuser,et al. GSK3β phosphorylation modulates CLASP–microtubule association and lamella microtubule attachment , 2009, The Journal of cell biology.
[11] N. Galjart,et al. A plus-end raft to control microtubule dynamics and function. , 2003, Current opinion in cell biology.
[12] N. Galjart,et al. EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. , 2005, Molecular biology of the cell.
[13] W. Jahnke,et al. Thermodynamics of the Op18/Stathmin-Tubulin Interaction* , 2003, Journal of Biological Chemistry.
[14] M. Steinmetz,et al. Key interaction modes of dynamic +TIP networks. , 2006, Molecular cell.
[15] J. Shabanowitz,et al. Aurora B Phosphorylates Centromeric MCAK and Regulates Its Localization and Microtubule Depolymerization Activity , 2004, Current Biology.
[16] Anna Akhmanova,et al. Structure-function relationship of CAP-Gly domains , 2007, Nature Structural &Molecular Biology.
[17] Gary G. Borisy,et al. Mammalian end binding proteins control persistent microtubule growth , 2009, The Journal of cell biology.
[18] Liedewij Laan,et al. Reconstitution of a microtubule plus-end tracking system in vitro , 2007, Nature.
[19] G. Wider,et al. Measuring protein concentrations by NMR spectroscopy. , 2006, Journal of the American Chemical Society.
[20] C. Hoogenraad,et al. Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity , 2009, Neuron.
[21] David Pellman,et al. Surfing on microtubule ends. , 2003, Trends in cell biology.
[22] Jack Greenblatt,et al. Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxB RNA Complex , 1997 .
[23] G. von Dassow,et al. MCAK associates with the tips of polymerizing microtubules , 2005, The Journal of cell biology.
[24] Y. Goldman,et al. Microtubule plus-end tracking by CLIP-170 requires EB1 , 2009, Proceedings of the National Academy of Sciences.
[25] Ronald D. Vale,et al. Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end , 2005, The Journal of cell biology.
[26] T. Gibson,et al. Systematic Discovery of New Recognition Peptides Mediating Protein Interaction Networks , 2005, PLoS biology.
[27] J. Swedlow,et al. Aurora B regulates MCAK at the mitotic centromere. , 2004, Developmental cell.
[28] David Pellman,et al. Microtubule “Plus-End-Tracking Proteins” The End Is Just the Beginning , 2001, Cell.
[29] Anna Akhmanova,et al. Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.
[30] S. Kandels-Lewis,et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites , 2008, The Journal of cell biology.
[31] Niels Galjart,et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex , 2005, The Journal of cell biology.
[32] C. Hoogenraad,et al. STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER , 2008, Current Biology.
[33] I. Arnal,et al. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro , 2008, Nature Cell Biology.
[34] M. Chen,et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration , 2004, Nature Cell Biology.
[35] P. Tittmann,et al. The Schizosaccharomyces pombe EB1 Homolog Mal3p Binds and Stabilizes the Microtubule Lattice Seam , 2006, Cell.
[36] K. E. Busch,et al. The Microtubule Plus End-Tracking Proteins mal3p and tip1p Cooperate for Cell-End Targeting of Interphase Microtubules , 2004, Current Biology.
[37] Inke S Näthke,et al. The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. , 2004, Annual review of cell and developmental biology.